IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v57y2011icp36-47.html
   My bibliography  Save this article

LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability

Author

Listed:
  • Blengini, G.A.
  • Brizio, E.
  • Cibrario, M.
  • Genon, G.

Abstract

Given the booming of bioenergy plants under construction in Piedmont, in Northern Italy, Life Cycle Assessment (LCA) was used in order to assist public decision-makers during the evaluation of new bioenergy projects. Local administrators are in fact worried that public incentives granted to bioenergy producers, regardless of the overall environmental performance, might not encourage technological innovation and eco-efficiency, or bring unwanted indirect environmental effects. A detailed LCA of bioenergy production from dedicated crops (maize, sorghum, triticale and miscanthus) and manure through anaerobic digestion and combined heat and power generation was carried out. The LCA model was particularly focused on the end-of-life of digestate and site-specific data related to the impact of adopted energy conversion technologies. It was confirmed that bioenergy is not automatically synonymous with sustainable energy, as the differences in terms of environmental performance can be remarkable. EROI (Energy Return on Investment) index was estimated to be 3–5. The potential in terms of GHG saving depends on several factors and it is heavily influenced by the reference non-renewable energy to be substituted. End-of-life of digestate was found to be crucial for acidification and eutrophication, but also for GHG emissions. Finally, particulates equivalent emissions were found to be very large in comparison to modern natural gas power plants.

Suggested Citation

  • Blengini, G.A. & Brizio, E. & Cibrario, M. & Genon, G., 2011. "LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 36-47.
  • Handle: RePEc:eee:recore:v:57:y:2011:i:c:p:36-47
    DOI: 10.1016/j.resconrec.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911002047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blengini, Gian Andrea, 2008. "Using LCA to evaluate impacts and resources conservation potential of composting: A case study of the Asti District in Italy," Resources, Conservation & Recycling, Elsevier, vol. 52(12), pages 1373-1381.
    2. van Dam, J. & Faaij, A.P.C. & Hilbert, J. & Petruzzi, H. & Turkenburg, W.C., 2009. "Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part B. Environmental and socio-economic impacts on a regional level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1679-1709, October.
    3. Corti, Andrea & Lombardi, Lidia, 2004. "Biomass integrated gasification combined cycle with reduced CO2 emissions: Performance analysis and life cycle assessment (LCA)," Energy, Elsevier, vol. 29(12), pages 2109-2124.
    4. van Dam, J. & Faaij, A.P.C. & Hilbert, J. & Petruzzi, H. & Turkenburg, W.C., 2009. "Large-scale bioenergy production from soybeans and switchgrass in Argentina: Part A: Potential and economic feasibility for national and international markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1710-1733, October.
    5. Cherubini, Francesco, 2010. "GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns," Renewable Energy, Elsevier, vol. 35(7), pages 1565-1573.
    6. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    7. Lehtomäki, A. & Huttunen, S. & Rintala, J.A., 2007. "Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 591-609.
    8. Cherubini, Francesco & Bird, Neil D. & Cowie, Annette & Jungmeier, Gerfried & Schlamadinger, Bernhard & Woess-Gallasch, Susanne, 2009. "Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 434-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khoo, Hsien H. & Wong, Loretta L. & Tan, Jonathan & Isoni, Valerio & Sharratt, Paul, 2015. "Synthesis of 2-methyl tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 174-182.
    2. Negro, Viviana & Ruggeri, Bernardo & Fino, Debora & Tonini, Davide, 2017. "Life cycle assessment of orange peel waste management," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 148-158.
    3. Lausselet, Carine & Cherubini, Francesco & Oreggioni, Gabriel David & del Alamo Serrano, Gonzalo & Becidan, Michael & Hu, Xiangping & Rørstad, Per Kr. & Strømman, Anders Hammer, 2017. "Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 50-61.
    4. Dahlin, Johannes & Nelles, Michael & Herbes, Carsten, 2017. "Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 27-38.
    5. Luo, Tao & Pan, Junting & Fu, Lintao & Mei, Zili & Kong, Cuixue & Huang, Hailong, 2017. "Reducing biogas emissions from village-scale plant with optimal floating-drum biogas storage tank and operation parameters," Applied Energy, Elsevier, vol. 208(C), pages 312-318.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    2. Julia Tomei & Stella Semino & Helena Paul & Lilian Joensen & Mario Monti & Erling Jelsøe, 2010. "Soy production and certification: the case of Argentinean soy-based biodiesel," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 371-394, April.
    3. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    4. Hoefnagels, Ric & Smeets, Edward & Faaij, André, 2010. "Greenhouse gas footprints of different biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1661-1694, September.
    5. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Biancamaria Torquati & Sonia Venanzi & Adriano Ciani & Francesco Diotallevi & Vincenzo Tamburi, 2014. "Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria," Sustainability, MDPI, vol. 6(10), pages 1-18, September.
    7. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    8. André P. C. Faaij, 2022. "Repairing What Policy Is Missing Out on: A Constructive View on Prospects and Preconditions for Sustainable Biobased Economy Options to Mitigate and Adapt to Climate Change," Energies, MDPI, vol. 15(16), pages 1-25, August.
    9. Diogo, V. & van der Hilst, F. & van Eijck, J. & Verstegen, J.A. & Hilbert, J. & Carballo, S. & Volante, J. & Faaij, A., 2014. "Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 208-224.
    10. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    11. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    12. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    13. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    14. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    15. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    16. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    17. Yan Bai & Xingyi Ma & Jing Zhang & Lei Zhang & Jing Bai, 2024. "Energy Efficiency Assessment and Prediction Based on Indicator System, PSO + AHP − FCE Model and Regression Algorithm," Energies, MDPI, vol. 17(8), pages 1-23, April.
    18. Zeb, Iftikhar & Ma, Jingwei & Frear, Craig & Zhao, Quanbao & Ndegwa, Pius & Yao, Yiqing & Kafle, Gopi Krishna, 2017. "Recycling separated liquid-effluent to dilute feedstock in anaerobic digestion of dairy manure," Energy, Elsevier, vol. 119(C), pages 1144-1151.
    19. Anna Lymperatou & Niels B. Rasmussen & Hariklia N. Gavala & Ioannis V. Skiadas, 2021. "Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects," Energies, MDPI, vol. 14(3), pages 1-16, February.
    20. Rives, Jesús & Fernandez-Rodriguez, Ivan & Gabarrell, Xavier & Rieradevall, Joan, 2012. "Environmental analysis of cork granulate production in Catalonia – Northern Spain," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 132-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:57:y:2011:i:c:p:36-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.