IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i5p1875-1892d25382.html
   My bibliography  Save this article

Bioenergy Consumption and Biogas Potential in Cambodian Households

Author

Listed:
  • Suvisanna Mustonen

    (Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 6, Tampere 33920, Finland)

  • Risto Raiko

    (Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 6, Tampere 33920, Finland)

  • Jyrki Luukkanen

    (Finland Futures Research Centre, University of Turku, Yliopistonkatu 58 D, Tampere, 33100, Finland)

Abstract

Residential bioenergy consumption and bioenergy resources based on by-products of residential agricultural production and animal husbandry have been analyzed statistically, based on a nationwide residential livelihood and energy survey conducted in Cambodia in 2009. Furthermore, the potential for biomethanation, residential biogas consumption and small-scale power generation for non-electrified rural areas has been assessed. Household potential of biogas substrates in Cambodia, based on nationally representative data has not been presented earlier. This paper proposes mixtures of substrates for biogas production for various livelihood zones of Cambodia. The occurrence of biomass suitable for biomethanation is most favorable in unelectrified rural areas, except for fishing villages. The theoretical daily biogas potential from animal dung and rice husk appears to be promising for households in unelectrified rural villages, both for household digesters and units designed for small-scale electricity generation. Theoretical CH 4 content of biogas was 63.9% and specific biogas yield 0.41 Nm 3 /kg for households in unelectrified villages. Based on the survey, the energy content of biogas potential is 25.5 PJ per year. This study shows that biogas has nationally significant technical potential in Cambodia.

Suggested Citation

  • Suvisanna Mustonen & Risto Raiko & Jyrki Luukkanen, 2013. "Bioenergy Consumption and Biogas Potential in Cambodian Households," Sustainability, MDPI, vol. 5(5), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:5:p:1875-1892:d:25382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/5/1875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/5/1875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malik, Urooj S. & Ahmed, Mahfuz & Sombilla, Mercedita A. & Cueno, Sarah L., 2009. "Biofuels production for smallholder producers in the Greater Mekong Sub-region," Applied Energy, Elsevier, vol. 86(Supplemen), pages 58-68, November.
    2. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    3. Sovacool, Benjamin K., 2011. "Conceptualizing urban household energy use: Climbing the "Energy Services Ladder"," Energy Policy, Elsevier, vol. 39(3), pages 1659-1668, March.
    4. San, Vibol & Sriv, Tharith & Spoann, Vin & Var, Sovanndara & Seak, Sophat, 2012. "Economic and environmental costs of rural household energy consumption structures in Sameakki Meanchey district, Kampong Chhnang Province, Cambodia," Energy, Elsevier, vol. 48(1), pages 484-491.
    5. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    6. Devendra, C. & Thomas, D., 2002. "Smallholder farming systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 17-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    2. Bazargan, Alireza & Bazargan, Majid & McKay, Gordon, 2015. "Optimization of rice husk pretreatment for energy production," Renewable Energy, Elsevier, vol. 77(C), pages 512-520.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    2. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    3. Kwofie, E.M. & Ngadi, M., 2017. "A review of rice parboiling systems, energy supply, and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 465-472.
    4. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Frempong, Raymond Boadi & Orkoh, Emmanuel & Kofinti, Raymond Elikplim, 2021. "Household's use of cooking gas and Children's learning outcomes in rural Ghana," Energy Economics, Elsevier, vol. 103(C).
    6. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    7. Prashamsa Thapa & Brijesh Mainali & Shobhakar Dhakal, 2023. "Focus on Climate Action: What Level of Synergy and Trade-Off Is There between SDG 13; Climate Action and Other SDGs in Nepal?," Energies, MDPI, vol. 16(1), pages 1-32, January.
    8. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    9. Ebata, A. & Win, K.S. & Loevinsohn, M. & Macgregor, H., 2018. "Value chain governance and institutions behind biosecurity along pig value chains in Myanmar," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277082, International Association of Agricultural Economists.
    10. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    11. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    12. Debnath, R. & Bardhan, R. & Darby, S. & Mohaddes, K. & Sunikka-Blank, M. & Coelho, A C V. & Isa, A., 2020. "A deep-narrative analysis of energy cultures in slum rehabilitation housing of Abuja, Mumbai and Rio de Janeiro for just policy design," Cambridge Working Papers in Economics 20101, Faculty of Economics, University of Cambridge.
    13. Ding, Wenguang & Wang, Lijun & Chen, Baoyu & Xu, Luan & Li, Haoxu, 2014. "Impacts of renewable energy on gender in rural communities of north-west China," Renewable Energy, Elsevier, vol. 69(C), pages 180-189.
    14. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    15. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    16. Hall, David C. & Le, Quynh B., 2017. "Mitigation of water related zoonotic diseases on small-scale integrated farms in Vietnam," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259132, Agricultural and Applied Economics Association.
    17. E. Somanathan & Randall Bluffstone, 2015. "Biogas: Clean Energy Access with Low-Cost Mitigation of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 265-277, October.
    18. Ana Escoto Castillo & Landy Sánchez Peña, 2017. "Diffusion of Electricity Consumption Practices in Mexico," Social Sciences, MDPI, vol. 6(4), pages 1-24, November.
    19. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    20. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:5:p:1875-1892:d:25382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.