IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5105-d861603.html
   My bibliography  Save this article

Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia

Author

Listed:
  • Ricardo Situmeang

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic)

  • Jana Mazancová

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic)

  • Hynek Roubík

    (Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic)

Abstract

By 2025, biogas is estimated to become a larger part of Indonesia’s energy mix. Biogas is a renewable energy source that also has economic and environmental advantages. Domestic biogas generation has been embraced in Indonesia as a response to the country’s energy security concerns in rural areas. Since the 1970s, 48,038 biogas plants have been built in the region. To fully develop this technology, Indonesia must discontinue relying on fossil fuels and substitute current fossil-fuel-based energy. This article provides an overview of renewable technology in Indonesia, as well as addressing domestic energy demands and referring to existing literature on the socio-technical and socio-economic barriers to biogas adoption in Indonesia. Based on a rigorous review of 71 publications published in Web of Science ( WoS ) between 2010 and 2021, this study explores existing barriers for biogas adoption by summarizing the current literature from technical, economic, social and environmental perspectives. Biogas adoption is a complex process with many interwoven components. Therefore, this research addresses a gap in the strategic planning and implementation process, providing policymakers with pathways to eliminate bottlenecks in renewable energy planning. Recommendations for future research are also proposed.

Suggested Citation

  • Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5105-:d:861603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    2. Poeschl, Martina & Ward, Shane & Owende, Philip, 2010. "Prospects for expanded utilization of biogas in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1782-1797, September.
    3. Kimberly M. Carlson & Lisa M. Curran & Gregory P. Asner & Alice McDonald Pittman & Simon N. Trigg & J. Marion Adeney, 2013. "Carbon emissions from forest conversion by Kalimantan oil palm plantations," Nature Climate Change, Nature, vol. 3(3), pages 283-287, March.
    4. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    5. Mittal, Shivika & Ahlgren, Erik O. & Shukla, P.R., 2019. "Future biogas resource potential in India: A bottom-up analysis," Renewable Energy, Elsevier, vol. 141(C), pages 379-389.
    6. Kamp, Linda Manon & Bermúdez Forn, Esteban, 2016. "Ethiopia׳s emerging domestic biogas sector: Current status, bottlenecks and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 475-488.
    7. Lantz, Mikael & Svensson, Mattias & Bjornsson, Lovisa & Borjesson, Pal, 2007. "The prospects for an expansion of biogas systems in Sweden--Incentives, barriers and potentials," Energy Policy, Elsevier, vol. 35(3), pages 1830-1843, March.
    8. Lönnqvist, Jan-Erik & Verkasalo, Markku & Walkowitz, Gari & Wichardt, Philipp C., 2015. "Measuring individual risk attitudes in the lab: Task or ask? An empirical comparison," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 254-266.
    9. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    10. Dahlin, Johannes & Herbes, Carsten & Nelles, Michael, 2015. "Biogas digestate marketing: Qualitative insights into the supply side," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 152-161.
    11. Douglas Aitken & Diego Rivera & Alex Godoy-Faúndez & Eduardo Holzapfel, 2016. "Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile," Sustainability, MDPI, vol. 8(2), pages 1-18, February.
    12. Rao, P. Venkateswara & Baral, Saroj S. & Dey, Ranjan & Mutnuri, Srikanth, 2010. "Biogas generation potential by anaerobic digestion for sustainable energy development in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2086-2094, September.
    13. Yasar, Abdullah & Nazir, Saba & Tabinda, Amtul Bari & Nazar, Masooma & Rasheed, Rizwan & Afzaal, Muhammad, 2017. "Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan," Renewable Energy, Elsevier, vol. 108(C), pages 19-25.
    14. Bedi, Arjun S. & Sparrow, Robert & Tasciotti, Luca, 2017. "The impact of a household biogas programme on energy use and expenditure in East Java," Energy Economics, Elsevier, vol. 68(C), pages 66-76.
    15. Chien Bong, Cassendra Phun & Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Chin Siong & Peng Tan, William Soo & Lee, Chew Tin, 2017. "Review on the renewable energy and solid waste management policies towards biogas development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 988-998.
    16. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Francesco Calise & Rafał Figaj, 2022. "Recent Advances in Sustainable Energy and Environmental Development," Energies, MDPI, vol. 15(18), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    2. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    3. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    4. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Sunny Vaish & Gagandeep Kaur & Naveen Kumar Sharma & Nikhil Gakkhar, 2022. "Estimation for Potential of Agricultural Biomass Sources as Projections of Bio-Briquettes in Indian Context," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    6. Mittal, Shivika & Ahlgren, Erik O. & Shukla, P.R., 2019. "Future biogas resource potential in India: A bottom-up analysis," Renewable Energy, Elsevier, vol. 141(C), pages 379-389.
    7. Jan, Inayatullah & Akram, Waqar, 2018. "Willingness of rural communities to adopt biogas systems in Pakistan: Critical factors and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3178-3185.
    8. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    9. Zhang, Weishi & Xu, Ying & Wang, Can & Streets, David G., 2022. "Assessment of the driving factors of CO2 mitigation costs of household biogas systems in China: A LMDI decomposition with cost analysis model," Renewable Energy, Elsevier, vol. 181(C), pages 978-989.
    10. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    11. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    12. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    13. He, Pan & Veronesi, Marcella, 2017. "Personality traits and renewable energy technology adoption: A policy case study from China," Energy Policy, Elsevier, vol. 107(C), pages 472-479.
    14. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    15. Li, Changjiang & Liao, Yuncheng & Wen, Xiaoxia & Wang, Yangfeng & Yang, Fei, 2015. "The development and countermeasures of household biogas in northwest grain for green project areas of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 835-846.
    16. Kari-Anne Lyng & Lise Skovsgaard & Henrik Klinge Jacobsen & Ole Jørgen Hanssen, 2020. "The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7125-7152, December.
    17. Yasar, Abdullah & Nazir, Saba & Rasheed, Rizwan & Tabinda, Amtul Bari & Nazar, Masooma, 2017. "Economic review of different designs of biogas plants at household level in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 221-229.
    18. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    19. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    20. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Khan, M.Z.H. & Sarker, M., 2016. "Feasibility analysis of implementing anaerobic digestion as a potential energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 124-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5105-:d:861603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.