IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v72y2017icp465-472.html
   My bibliography  Save this article

A review of rice parboiling systems, energy supply, and consumption

Author

Listed:
  • Kwofie, E.M.
  • Ngadi, M.

Abstract

Parboiling is an energy and labour intensive pre-milling process aimed at improving the quality of paddy rice. Several parboiling processes along with different energy supply systems have been developed and reported to improve the overall grain quality, processing time and energy consumption. This paper reviews the parboiling process – concept, systems, energy supply and consumption, as well as the impact of energy use on product quality. Rice husk is most widely used energy source for parboiling and has been used primarily in direct combustion systems, as briquettes or through gasification systems. Parboiling energy consumption varies widely depending on the process conditions, parboiling system, processing capacity and the energy source.

Suggested Citation

  • Kwofie, E.M. & Ngadi, M., 2017. "A review of rice parboiling systems, energy supply, and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 465-472.
  • Handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:465-472
    DOI: 10.1016/j.rser.2017.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapur, Tarun & Kandpal, T.C. & Garg, H.P., 1996. "Energy demand and supply options for primary processing of rice in India," Renewable Energy, Elsevier, vol. 9(1), pages 946-949.
    2. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    3. Mohammed Ahiduzzaman & Abul K. M. Sadrul Islam, 2009. "Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh," Energies, MDPI, vol. 2(1), pages 1-16, March.
    4. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    5. Yoon, Sang Jun & Son, Yung-Il & Kim, Yong-Ku & Lee, Jae-Goo, 2012. "Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier," Renewable Energy, Elsevier, vol. 42(C), pages 163-167.
    6. Johnson, Nathan G. & Bryden, Kenneth M., 2012. "Factors affecting fuelwood consumption in household cookstoves in an isolated rural West African village," Energy, Elsevier, vol. 46(1), pages 310-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Islam, Md. Rabiul & Sarker, Pejush Chandra & Ghosh, Subarto Kumar, 2017. "Prospect and advancement of solar irrigation in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 406-422.
    2. Rodrigues Silveira, Andrei Rei & Nadaleti, Willian Cézar & Przybyla, Grzegorz & Belli Filho, Paulo, 2019. "Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy," Renewable Energy, Elsevier, vol. 134(C), pages 1003-1016.
    3. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    4. Nadaleti, Willian Cézar, 2019. "Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning," Renewable Energy, Elsevier, vol. 131(C), pages 55-72.
    5. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    2. Nadaleti, Willian Cézar, 2019. "Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning," Renewable Energy, Elsevier, vol. 131(C), pages 55-72.
    3. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Hashim, Haslenda & Wan Alwi, Sharifah Rafidah, 2013. "Towards an integrated, resource-efficient rice mill complex," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 41-51.
    4. Imtiaz Anando, Ahmed & Ehsan, M Monjurul & Karim, Md Rezwanul & Bhuiyan, Arafat A. & Ahiduzzaman, Md & Karim, Azharul, 2023. "Thermochemical pretreatments to improve the fuel properties of rice husk: A review," Renewable Energy, Elsevier, vol. 215(C).
    5. Bazargan, Alireza & Bazargan, Majid & McKay, Gordon, 2015. "Optimization of rice husk pretreatment for energy production," Renewable Energy, Elsevier, vol. 77(C), pages 512-520.
    6. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    7. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    8. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Energy efficiency and emission assessment of a continuous rice husk stove for rice parboiling," Energy, Elsevier, vol. 122(C), pages 340-349.
    9. Ndindeng, Sali Atanga & Wopereis, Marco & Sanyang, Sidi & Futakuchi, Koichi, 2019. "Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa," Renewable Energy, Elsevier, vol. 139(C), pages 924-935.
    10. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    11. Ali, Ghaffar & Bashir, Muhammad Khalid & Ali, Hassan & Bashir, Muhammad Hamid, 2016. "Utilization of rice husk and poultry wastes for renewable energy potential in Pakistan: An economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 25-29.
    12. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    13. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    14. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    15. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2017. "Costs and impacts of potential energy strategies for rural households in developing communities," Energy, Elsevier, vol. 138(C), pages 1157-1174.
    17. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    18. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    19. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    20. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:72:y:2017:i:c:p:465-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.