IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp1287-1299.html
   My bibliography  Save this article

Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries

Author

Listed:
  • Ortiz, Willington
  • Terrapon-Pfaff, Julia
  • Dienst, Carmen

Abstract

Accelerating the diffusion of domestic biogas is considered to be a promising option for reaching the goal of universal access to energy by 2030, particularly for the provision of cooking energy for rural populations in developing countries. The aim of this study is to develop a systematic account of the factors that influence the diffusion of domestic biogas technologies. To achieve this objective, a three step analysis approach is applied. In the first step, a conceptual model is built based on insights from scholars that have been studying the diffusion of energy innovations in rural contexts. In the next step, a qualitative content analysis of scientific literature is undertaken to test and refine the categories proposed by the conceptual model and to systematically organise the empirical evidence of the factors that influence the diffusion of domestic biogas in developing and emerging countries. The systemised evidence is used to identify the components and interactions between the household configurations and socio-economic context that determine both the adoption process at household level and the overall technology diffusion. Finally, in the last step, we reflect on the implications of the resultant systematic conceptualisation regarding the purpose and design of programmes promoting the dissemination of domestic biogas technologies.

Suggested Citation

  • Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:1287-1299
    DOI: 10.1016/j.rser.2016.11.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116308280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz-Mercado, Ilse & Masera, Omar & Zamora, Hilda & Smith, Kirk R., 2011. "Adoption and sustained use of improved cookstoves," Energy Policy, Elsevier, vol. 39(12), pages 7557-7566.
    2. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    3. Agarwal, Bina, 1983. "Diffusion of rural innovations: Some analytical issues and the case of wood-burning stoves," World Development, Elsevier, vol. 11(4), pages 359-376, April.
    4. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    5. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    6. Mwakaje, Agnes Godfrey, 2008. "Dairy farming and biogas use in Rungwe district, South-west Tanzania: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2240-2252, October.
    7. Xiaohua, Wang & Chonglan, Di & Xiaoyan, Hu & Weiming, Wu & Xiaoping, Jiang & Shangyun, Jiang, 2007. "The influence of using biogas digesters on family energy consumption and its economic benefit in rural areas--comparative study between Lianshui and Guichi in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 1018-1024, June.
    8. Hiemstra-van der Horst, Greg & Hovorka, Alice J., 2008. "Reassessing the "energy ladder": Household energy use in Maun, Botswana," Energy Policy, Elsevier, vol. 36(9), pages 3333-3344, September.
    9. Buysman, Eric & Mol, Arthur P.J., 2013. "Market-based biogas sector development in least developed countries —The case of Cambodia," Energy Policy, Elsevier, vol. 63(C), pages 44-51.
    10. Qu, Wei & Tu, Qin & Bluemling, Bettina, 2013. "Which factors are effective for farmers’ biogas use?–Evidence from a large-scale survey in China," Energy Policy, Elsevier, vol. 63(C), pages 26-33.
    11. Gosens, Jorrit & Lu, Yonglong & He, Guizhen & Bluemling, Bettina & Beckers, Theo A.M., 2013. "Sustainability effects of household-scale biogas in rural China," Energy Policy, Elsevier, vol. 54(C), pages 273-287.
    12. San, Vibol & Sriv, Tharith & Spoann, Vin & Var, Sovanndara & Seak, Sophat, 2012. "Economic and environmental costs of rural household energy consumption structures in Sameakki Meanchey district, Kampong Chhnang Province, Cambodia," Energy, Elsevier, vol. 48(1), pages 484-491.
    13. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    14. Daxiong, Qiu & Shuhua, Gu & Baofen, Liange & Gehua, Wang, 1990. "Diffusion and innovation in the Chinese biogas program," World Development, Elsevier, vol. 18(4), pages 555-563, April.
    15. Pérez, Irene & Garfí, Marianna & Cadena, Erasmo & Ferrer, Ivet, 2014. "Technical, economic and environmental assessment of household biogas digesters for rural communities," Renewable Energy, Elsevier, vol. 62(C), pages 313-318.
    16. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    17. Chen, Yu & Yang, Gaihe & Sweeney, Sandra & Feng, Yongzhong, 2010. "Household biogas use in rural China: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 545-549, January.
    18. Campbell, B. M. & Vermeulen, S. J. & Mangono, J. J. & Mabugu, R., 2003. "The energy transition in action: urban domestic fuel choices in a changing Zimbabwe," Energy Policy, Elsevier, vol. 31(6), pages 553-562, May.
    19. Lichtman, Rob, 1987. "Toward the diffusion of rural energy technologies: Some lessons from the Indian biogas program," World Development, Elsevier, vol. 15(3), pages 347-374, March.
    20. Masera, Omar R. & Saatkamp, Barbara D. & Kammen, Daniel M., 2000. "From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model," World Development, Elsevier, vol. 28(12), pages 2083-2103, December.
    21. Martí-Herrero, Jaime & Chipana, Maria & Cuevas, Carlos & Paco, Gabriel & Serrano, Victor & Zymla, Bernhard & Heising, Klas & Sologuren, Jaime & Gamarra, Alba, 2014. "Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia," Renewable Energy, Elsevier, vol. 71(C), pages 156-165.
    22. Kabir, Humayun & Yegbemey, Rosaine N. & Bauer, Siegfried, 2013. "Factors determinant of biogas adoption in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 881-889.
    23. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria, 2013. "A review of prefabricated biogas digesters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 738-748.
    24. He, Guizhen & Bluemling, Bettina & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Comparing centralized and decentralized bio-energy systems in rural China," Energy Policy, Elsevier, vol. 63(C), pages 34-43.
    25. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    26. Willington Ortiz & Carmen Dienst & Julia Terrapon-Pfaff, 2012. "Introducing Modern Energy Services into Developing Countries: The Role of Local Community Socio-Economic Structures," Sustainability, MDPI, vol. 4(3), pages 1-18, March.
    27. Davis, Mark, 1998. "Rural household energy consumption : The effects of access to electricity--evidence from South Africa," Energy Policy, Elsevier, vol. 26(3), pages 207-217, February.
    28. van Groenendaal, Willem & Gehua, Wang, 2010. "Microanalysis of the benefits of China's family-size bio-digesters," Energy, Elsevier, vol. 35(11), pages 4457-4466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyytimäki, Jari & Assmuth, Timo & Paloniemi, Riikka & Pyysiäinen, Jarkko & Rantala, Salla & Rikkonen, Pasi & Tapio, Petri & Vainio, Annukka & Winquist, Erika, 2021. "Two sides of biogas: Review of ten dichotomous argumentation lines of sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Afris Widya-Hasuti & Abbas Mardani & Dalia Streimikiene & Ali Sharifara & Fausto Cavallaro, 2018. "The Role of Process Innovation between Firm-Specific Capabilities and Sustainable Innovation in SMEs: Empirical Evidence from Indonesia," Sustainability, MDPI, vol. 10(7), pages 1-26, June.
    4. Nazia Yasmin & Philipp Grundmann, 2019. "Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan," Energies, MDPI, vol. 12(16), pages 1-16, August.
    5. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    6. Skoczkowski, Tadeusz & Bielecki, Sławomir & Wołowicz, Marcin & Sobczak, Lidia & Węglarz, Arkadiusz & Gilewski, Paweł, 2024. "Participation in demand side response. Are individual energy users interested in this?," Renewable Energy, Elsevier, vol. 232(C).
    7. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    2. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    3. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    4. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    5. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    6. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    7. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    8. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    9. Raha, Debadayita & Mahanta, Pinakeswar & Clarke, Michèle L., 2014. "The implementation of decentralised biogas plants in Assam, NE India: The impact and effectiveness of the National Biogas and Manure Management Programme," Energy Policy, Elsevier, vol. 68(C), pages 80-91.
    10. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    11. Jan, Inayatullah & Akram, Waqar, 2018. "Willingness of rural communities to adopt biogas systems in Pakistan: Critical factors and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3178-3185.
    12. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Wang, Xiaojiao & Lu, Xingang & Yang, Gaihe & Feng, Yongzhong & Ren, Guangxin & Han, Xinhui, 2016. "Development process and probable future transformations of rural biogas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 703-712.
    14. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    15. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    16. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2014. "The impact of the household decision environment on fuel choice behavior," Energy Economics, Elsevier, vol. 44(C), pages 236-247.
    17. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    18. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    19. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    20. Christophe Muller & Huijie Yan, 2018. "Household Fuel Use in Rural China," AMSE Working Papers 1808, Aix-Marseille School of Economics, France.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:1287-1299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.