IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2688-d1614976.html
   My bibliography  Save this article

Optimization of Biogas and Biomethane Yield from Anaerobic Conversion of Pepper Waste Using Response Surface Methodology

Author

Listed:
  • Chaima Bensegueni

    (Laboratoire de Recherche sur le Médicament et Développement Durable (ReMeDD), Faculty of Process Engineering, University of Constantine 3, Constantine 25000, Algeria)

  • Bani Kheireddine

    (Laboratoire de Recherche sur le Médicament et Développement Durable (ReMeDD), Faculty of Process Engineering, University of Constantine 3, Constantine 25000, Algeria)

  • Amel Khalfaoui

    (Laboratory of Environmental Process Engineering (LIPE), Department of Environmental Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, Constantine 25000, Algeria)

  • Zahra Amrouci

    (Laboratoire de Recherche sur le Médicament et Développement Durable (ReMeDD), Faculty of Process Engineering, University of Constantine 3, Constantine 25000, Algeria)

  • Maya Ouissem Bouznada

    (Laboratoire de Recherche sur le Médicament et Développement Durable (ReMeDD), Faculty of Process Engineering, University of Constantine 3, Constantine 25000, Algeria)

  • Kerroum Derbal

    (Laboratory of Process Engineering for Sustainable Development and Health Products (GPDDPS), Department of Process Engineering, Ecole Nationale Polytechnique de Constantine, Constantine 25000, Algeria)

Abstract

Anaerobic digestion is a critical method for producing bioenergy from organic waste; however, its efficiency is highly influenced by several factors. This study aimed to enhance the AD process using the removed solid phase generated by the canning plant Amor Benamor (CAB) during the production of harissa. This research sought to identify the optimum pH conditions and inoculum/substrate ratio (I/S) for achieving the maximum biogas production while ensuring a high methane yield, using response surface methodology (RSM) and numerical optimization. The batch anaerobic digestion of pepper waste as a substrate and sewage sludge as an inoculum was conducted. The 11 experimental runs generated by Design Expert Software were conducted in reactors with a capacity of 150 mL and a working volume of 90 mL, under thermophilic conditions. The effects of pH in the range of 7 to 8 and an I/S ratio in the range of 0.167 to 0.5, and their interaction in terms of biogas and methane yield (mL/g VS), were evaluated using a central composite design (CCD). The findings highlighted that a pH of around 7.5 and an I/S ratio of 0.48 could give the highest predicted yield of 884.35 mL/g VS for biogas and 422.828 mL/g VS for methane. These predicted values were confirmed with an experimental validation run which exhibited a deviation of less than 5%. These results offer new opportunities for enhanced biogas production from accumulated waste, contributing to the growth of sustainable energy alternatives.

Suggested Citation

  • Chaima Bensegueni & Bani Kheireddine & Amel Khalfaoui & Zahra Amrouci & Maya Ouissem Bouznada & Kerroum Derbal, 2025. "Optimization of Biogas and Biomethane Yield from Anaerobic Conversion of Pepper Waste Using Response Surface Methodology," Sustainability, MDPI, vol. 17(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2688-:d:1614976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Aiban Abdulhakim Saeed Ghaleb & Shamsul Rahman Mohamed Kutty & Yeek-Chia Ho & Ahmad Hussaini Jagaba & Azmatullah Noor & Abdulnaser Mohammed Al-Sabaeei & Najib Mohammed Yahya Almahbashi, 2020. "Response Surface Methodology to Optimize Methane Production from Mesophilic Anaerobic Co-Digestion of Oily-Biological Sludge and Sugarcane Bagasse," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravago, Majah-Leah V. & Fabella, Raul V. & Jandoc, Karl Robert L. & Frias, Renzi G. & Magadia, J. Kathleen P., 2021. "Gauging the market potential for natural gas among Philippine manufacturing firms," Energy, Elsevier, vol. 237(C).
    2. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    3. Zhang, Rui & Cao, Xuewen & Zhang, Xingwang & Yang, Jian & Bian, Jiang, 2024. "Co-benefits of the liquid hydrogen economy and LNG economy: Advances in LNG integrating LH2 production processes," Energy, Elsevier, vol. 301(C).
    4. Esparza, Ángel E. & Rowan, Gillian & Newhook, Ashley & Deglint, Hanford J. & Garrison, Billy & Orth-Lashley, Bryn & Girard, Marianne & Shaw, Warren, 2023. "Analysis of a tiered top-down approach using satellite and aircraft platforms to monitor oil and gas facilities in the Permian basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Khan, Nawaz & Ahmad, Anees & Sharma, Vikas & Saha, Amal Krishna & Pandey, Ashok & Chaturvedi Bhargava, Preeti, 2022. "An integrative study for efficient removal of hazardous azo dye using microbe-immobilized cow dung biochar in a continuous packed bed reactor," Renewable Energy, Elsevier, vol. 200(C), pages 1589-1601.
    6. Éva Greutter-Gregus & Gábor Koncz & Kitti Némedi-Kollár, 2024. "Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City," Energies, MDPI, vol. 17(21), pages 1-28, November.
    7. Wang, Bin & Liu, Shuyang & Wang, Pengfei, 2022. "Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation," Energy, Elsevier, vol. 247(C).
    8. Yadong Pei & Chiou-Jye Huang & Yamin Shen & Mingyue Wang, 2023. "A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional Network," Energies, MDPI, vol. 16(5), pages 1-15, February.
    9. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    10. Casper Boongaling Agaton, 2022. "Will a Geopolitical Conflict Accelerate Energy Transition in Oil-Importing Countries? A Case Study of the Philippines from a Real Options Perspective," Resources, MDPI, vol. 11(6), pages 1-17, June.
    11. Jasmine Sie Ming Tiong & Yi Jing Chan & Jun Wei Lim & Mardawani Mohamad & Chii-Dong Ho & Anisa Ur Rahmah & Worapon Kiatkittipong & Wipoo Sriseubsai & Izumi Kumakiri, 2021. "Simulation and Optimization of Anaerobic Co-Digestion of Food Waste with Palm Oil Mill Effluent for Biogas Production," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    12. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    13. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
    14. Mariusz Niekurzak, 2021. "The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions," Energies, MDPI, vol. 14(22), pages 1-17, November.
    15. Cassetta, Ernesto & Nava, Consuelo R. & Zoia, Maria Grazia, 2022. "A three-step procedure to investigate the convergence of electricity and natural gas prices in the European Union," Energy Economics, Elsevier, vol. 105(C).
    16. Aigbe, Uyiosa Osagie & Ukhurebor, Kingsley Eghonghon & Osibote, Adelaja Otolorin & Hassaan, Mohamed A. & El Nemr, Ahmed, 2024. "Optimization and prediction of biogas yield from pretreated Ulva Intestinalis Linnaeus applying statistical-based regression approach and machine learning algorithms," Renewable Energy, Elsevier, vol. 235(C).
    17. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.
    18. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    19. Robert J. Brecha & Gaurav Ganti & Robin D. Lamboll & Zebedee Nicholls & Bill Hare & Jared Lewis & Malte Meinshausen & Michiel Schaeffer & Christopher J. Smith & Matthew J. Gidden, 2022. "Institutional decarbonization scenarios evaluated against the Paris Agreement 1.5 °C goal," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2688-:d:1614976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.