IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5498-d1513163.html
   My bibliography  Save this article

Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City

Author

Listed:
  • Éva Greutter-Gregus

    (Doctoral School of Economic and Regional Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Gábor Koncz

    (Institute of Rural Development and Sustainable Economy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Kitti Némedi-Kollár

    (Institute of Rural Development and Sustainable Economy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

Abstract

Miskolc, which is the focus of our investigation, is the fourth most populous city in Hungary and the center of one of the most underdeveloped NUTS2 (basic territorial category for the regional policy of the European Union) regions in the European Union. The socialist heavy industry played a decisive role in the development of the city, the decline of which also left deep traces in the city. In its current position, the city tries to manage its available resources as efficiently as possible, and the city management is open to the use of modern urban development tools. This is supported by the fact that Miskolc was the first Hungarian city to join the Green Cities for Sustainable Europe movement in 2011, and then in 2015, it joined the Triangulum project of the EU Smart Cities and Communities program as a follower city. In the process of becoming a smart city, the dimensions of environmental sustainability and energy efficiency were given a prominent role, which should not be surprising considering the traditions of the city. Within this, we must first mention the construction of the geothermal central heating system, with which the city really took significant steps in this field. The main goal of the study is to develop a new smart local concept closely linked to regional development and the key energy sector, through which the local adaptation of the defining elements of the internationally defined smart city in several forms for the city of Miskolc will be presented. In our study, we review how the results achieved by Miskolc so far and the development plans for the future fit in with the smart energy developments of smart cities. Before exploring the processes in Miskolc, we will deal in more detail with the possibilities inherent in district heating and geothermal energy utilization and Hungary’s capabilities.

Suggested Citation

  • Éva Greutter-Gregus & Gábor Koncz & Kitti Némedi-Kollár, 2024. "Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City," Energies, MDPI, vol. 17(21), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5498-:d:1513163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viktoria Mannheim & Károly Nehéz & Salman Brbhan & Péter Bencs, 2023. "Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment," Energies, MDPI, vol. 16(19), pages 1-23, October.
    2. Kim, Hakpyeong & Choi, Heeju & Kang, Hyuna & An, Jongbaek & Yeom, Seungkeun & Hong, Taehoon, 2021. "A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Magdalena Krystyna Wyrwicka & Ewa Więcek-Janka & Łukasz Brzeziński, 2023. "Transition to Sustainable Energy System for Smart Cities—Literature Review," Energies, MDPI, vol. 16(21), pages 1-26, October.
    4. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
    5. Aleksandra Lewandowska & Justyna Chodkowska-Miszczuk & Krzysztof Rogatka & Tomasz Starczewski, 2020. "Smart Energy in a Smart City: Utopia or Reality? Evidence from Poland," Energies, MDPI, vol. 13(21), pages 1-19, November.
    6. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Krisztina Varró & Ádám Szalai, 2022. "Discourses and practices of the smart city in Central Eastern Europe: insights from Hungary’s ‘big’ cities," Urban Research & Practice, Taylor & Francis Journals, vol. 15(5), pages 699-723, October.
    8. Poggi, Francesca & Amado, Miguel, 2024. "The spatial dimension of energy consumption in cities," Energy Policy, Elsevier, vol. 187(C).
    9. Carolyn Kousky & Stephen H. Schneider, 2003. "Global climate policy: will cities lead the way?," Climate Policy, Taylor & Francis Journals, vol. 3(4), pages 359-372, December.
    10. Claudiu CICEA & Corina MARINESCU & Nicolae PINTILIE, 2019. "Smart Cities Using Smart Choices For Energy: Integrating Modern Bioenergy In Consumption," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 14(4), pages 21-34, November.
    11. Tomasz Rokicki & Radosław Jadczak & Adam Kucharski & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy," Energies, MDPI, vol. 15(17), pages 1-26, August.
    12. Kiss, Viktor Miklós, 2015. "Modelling the energy system of Pécs – The first step towards a sustainable city," Energy, Elsevier, vol. 80(C), pages 373-387.
    13. Mosannenzadeh, Farnaz & Di Nucci, Maria Rosaria & Vettorato, Daniele, 2017. "Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach," Energy Policy, Elsevier, vol. 105(C), pages 191-201.
    14. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2016. "Energy management and planning in smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 273-287.
    15. Haarstad, Håvard & Wathne, Marikken W., 2019. "Are smart city projects catalyzing urban energy sustainability?," Energy Policy, Elsevier, vol. 129(C), pages 918-925.
    16. Alexander Titov & György Kövér & Katalin Tóth & Géza Gelencsér & Bernadett Horváthné Kovács, 2021. "Acceptance and Potential of Renewable Energy Sources Based on Biomass in Rural Areas of Hungary," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    17. Norbert Bozsik & András Szeberényi & Nándor Bozsik, 2023. "Examination of the Hungarian Electricity Industry Structure with Special Regard to Renewables," Energies, MDPI, vol. 16(9), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Janusz & Marcin Kowalczyk, 2022. "How Smart Are V4 Cities? Evidence from the Multidimensional Analysis," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    2. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    3. Balta, Münevver Özge & Balta, Mustafa Tolga, 2022. "Development of a sustainable hydrogen city concept and initial hydrogen city projects," Energy Policy, Elsevier, vol. 166(C).
    4. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    5. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    6. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. András Szeberényi & Ferenc Bakó, 2023. "Electricity Market Dynamics and Regional Interdependence in the Face of Pandemic Restrictions and the Russian–Ukrainian Conflict," Energies, MDPI, vol. 16(18), pages 1-22, September.
    8. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & Bonomolo, Marina, 2019. "Assessment of tools for urban energy planning," Energy, Elsevier, vol. 176(C), pages 544-551.
    9. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    10. Fabio Gualandri & Aleksandra Kuzior, 2023. "Home Energy Management Systems Adoption Scenarios: The Case of Italy," Energies, MDPI, vol. 16(13), pages 1-20, June.
    11. Andrea Tortorelli & Giulia Sabina & Barbara Marchetti, 2024. "A Cooperative Multi-Agent Q-Learning Control Framework for Real-Time Energy Management in Energy Communities," Energies, MDPI, vol. 17(20), pages 1-27, October.
    12. Thomas Hickmann, 2021. "Locating Cities and Their Governments in Multi-Level Sustainability Governance," Politics and Governance, Cogitatio Press, vol. 9(1), pages 211-220.
    13. Andrea Benedek & Tomasz Rokicki & András Szeberényi, 2023. "Bibliometric Evaluation of Energy Efficiency in Agriculture," Energies, MDPI, vol. 16(16), pages 1-27, August.
    14. Ben Amer-Allam, Sara & Münster, Marie & Petrović, Stefan, 2017. "Scenarios for sustainable heat supply and heat savings in municipalities - The case of Helsingør, Denmark," Energy, Elsevier, vol. 137(C), pages 1252-1263.
    15. Piotr Olczak & Dominika Matuszewska, 2023. "Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power," Energies, MDPI, vol. 16(16), pages 1-11, August.
    16. Fabio De Felice & Marta Travaglioni & Antonella Petrillo, 2021. "Innovation Trajectories for a Society 5.0," Data, MDPI, vol. 6(11), pages 1-30, November.
    17. Alfredo Višković & Vladimir Franki & Angela Bašić-Šiško, 2022. "City-Level Transition to Low-Carbon Economy," Energies, MDPI, vol. 15(5), pages 1-24, February.
    18. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    19. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.
    20. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5498-:d:1513163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.