IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p821-d1572391.html
   My bibliography  Save this article

Spatiotemporal Dynamics of Soil and Soil Organic Carbon Losses via Water Erosion in Coffee Cultivation in Tropical Regions

Author

Listed:
  • Derielsen Brandão Santana

    (Institute of Natural Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

  • Guilherme Henrique Expedito Lense

    (Institute of Natural Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

  • Guilherme da Silva Rios

    (Institute of Natural Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

  • Raissa Eduarda da Silva Archanjo

    (Institute of Natural Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

  • Mariana Raniero

    (Institute of Natural Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

  • Aleksander Brandão Santana

    (Department of Food and Drugs, School of Pharmaceutical Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

  • Felipe Gomes Rubira

    (Institute of Natural Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

  • Joaquim Ernesto Bernardes Ayer

    (Department of Chemistry, University Center of Paulínia, R. Maria Vilac 121, Paulínia 13140-000, SP, Brazil)

  • Ronaldo Luiz Mincato

    (Institute of Natural Sciences, Federal University of Alfenas, R. Gabriel Monteiro da Silva 700, Alfenas 37130-001, MG, Brazil)

Abstract

Water erosion has severe impacts on soil and the carbon cycle. In tropical regions, it is significantly influenced by rainfall, soil erodibility, rapid changes in land use and land cover (LULC), and agricultural management practices. Understanding the dynamics of water erosion is essential for implementing precise land degradation control. This study aimed to estimate soil and soil organic carbon (SOC) losses due to water erosion over five years in a coffee-producing area in Brazil using the revised universal soil loss equation (RUSLE). The results revealed that average soil losses in coffee plantation areas ranged from 1.77 to 1.80 Mg ha −1 yr −1 , classified as very low. Total and potential soil loss ranged from 2184.60 to 6657.14 Mg ha −1 , a 305% difference, demonstrating the efficiency of vegetative cover (C factor) and conservation practices (P factor) in reducing soil loss rates. SOC losses were less than 200 kg ha −1 yr −1 , with averages of 17.67 and 13.00 kg ha −1 yr −1 in coffee areas. In conclusion, agricultural management practices, such as the presence of native vegetation, maintaining vegetative cover in coffee rows, contour planting, and improving agronomic techniques, are essential for reducing soil and SOC losses, even in scenarios of biennial alternation in coffee production. Thus, sustainable agricultural management plays a crucial role in mitigating water erosion, maintaining productivity, and addressing climate change.

Suggested Citation

  • Derielsen Brandão Santana & Guilherme Henrique Expedito Lense & Guilherme da Silva Rios & Raissa Eduarda da Silva Archanjo & Mariana Raniero & Aleksander Brandão Santana & Felipe Gomes Rubira & Joaqui, 2025. "Spatiotemporal Dynamics of Soil and Soil Organic Carbon Losses via Water Erosion in Coffee Cultivation in Tropical Regions," Sustainability, MDPI, vol. 17(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:821-:d:1572391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alice Fitch & Rebecca L. Rowe & Niall P. McNamara & Cahyo Prayogo & Rizky Maulana Ishaq & Rizki Dwi Prasetyo & Zak Mitchell & Simon Oakley & Laurence Jones, 2022. "The Coffee Compromise: Is Agricultural Expansion into Tree Plantations a Sustainable Option?," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    2. Ming Ling & Jianjun Chen & Yanping Lan & Zizhen Chen & Haotian You & Xiaowen Han & Guoqing Zhou, 2024. "Exploring the Drivers of Soil Conservation Variation in the Source of Yellow River under Diverse Development Scenarios from a Geospatial Perspective," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    3. Luciene Gomes & Silvio J. C. Simões & Eloi Lennon Dalla Nora & Eráclito Rodrigues de Sousa-Neto & Maria Cristina Forti & Jean Pierre H. B. Ometto, 2019. "Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity," Land, MDPI, vol. 8(1), pages 1-26, January.
    4. Jiahui Guo & Xiaohuang Liu & Jiufen Liu & Wenbo Zhang & Chaolei Yang & Liyuan Xing & Hongyu Li & Xinping Luo & Ran Wang & Zulpiya Mamat & Chao Wang & Honghui Zhao, 2024. "Analysis of Spatial and Temporal Patterns of Soil Erosion in the Yunnan–Guizhou Plateau during 2000–2030," Sustainability, MDPI, vol. 16(17), pages 1-20, September.
    5. Ashish Pandey & V. Chowdary & B. Mal, 2007. "Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 729-746, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & S. Singh, 2014. "Watershed Prioritization Using Saaty’s AHP Based Decision Support for Soil Conservation Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 475-494, January.
    2. Pradeep Mishra & Zhi-Qiang Deng, 2009. "Sediment TMDL Development for the Amite River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 839-852, March.
    3. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    4. Guoqiang Wang & Prasantha Hapuarachchi & Hiroshi Ishidaira & Anthony Kiem & Kuniyoshi Takeuchi, 2009. "Estimation of Soil Erosion and Sediment Yield During Individual Rainstorms at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1447-1465, June.
    5. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    6. Manoj Jain & Debjyoti Das, 2010. "Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2091-2112, August.
    7. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    8. Shishant Gupta & Chandra Shekhar Prasad Ojha & Vijay P. Singh & Adebayo J. Adeloye & Sanjay K. Jain, 2023. "Pixel-Based Soil Loss Estimation and Prioritization of North-Western Himalayan Catchment Based on Revised Universal Soil Loss Equation (RUSLE)," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    9. Tatiana Minnikova & Sergey Kolesnikov & Tatiana Minkina & Saglara Mandzhieva, 2021. "Assessment of Ecological Condition of Haplic Chernozem Calcic Contaminated with Petroleum Hydrocarbons during Application of Bioremediation Agents of Various Natures," Land, MDPI, vol. 10(2), pages 1-20, February.
    10. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    11. Matthew Yarrow & Antonio Tironi & Alejandro Ramírez & Víctor Marín, 2008. "An Applied Assessment Model to Evaluate the Socioeconomic Impact of Water Quality Regulations in Chile," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1531-1543, November.
    12. Kamel Khanchoul & Mahmoud Tourki, 2020. "Assessment and Mapping of Soil Sensitivity to Erosion Using GIS in Mellegue Catchment, Northeast of Algeria," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(1), pages 8-14, February.
    13. Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
    14. P. Dabral & Neelakshi Baithuri & Ashish Pandey, 2008. "Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1783-1798, December.
    15. Dora Neina & Eunice Agyarko-Mintah, 2022. "Duration of Cultivation Has Varied Impacts on Soil Charge Properties in Different Agro-Ecological Zones of Ghana," Land, MDPI, vol. 11(10), pages 1-17, September.
    16. Sudipto Halder & Abhishek RoyChowdhury & Sayanti Kar & Debdas Ray & Gupinath Bhandari, 2024. "Critical Watershed Prioritization through Multi-Criteria Decision-Making Techniques and Geographical Information System Integration for Watershed Management," Sustainability, MDPI, vol. 16(8), pages 1-25, April.
    17. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    18. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    19. Andrianarimanana, Mihasina Harinaivo & Yongjian, Pu & Rabezanahary Tanteliniaina, Mirindra Finaritra, 2023. "Assessment of the importance of climate, land, and soil on the global supply for agricultural products and global food security: Evidence from Madagascar," Food Policy, Elsevier, vol. 115(C).
    20. Sagarika Patowary & Arup Kumar Sarma, 2018. "GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3535-3547, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:821-:d:1572391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.