IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p777-d1320248.html
   My bibliography  Save this article

Exploring the Drivers of Soil Conservation Variation in the Source of Yellow River under Diverse Development Scenarios from a Geospatial Perspective

Author

Listed:
  • Ming Ling

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China)

  • Jianjun Chen

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China)

  • Yanping Lan

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China)

  • Zizhen Chen

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China)

  • Haotian You

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China)

  • Xiaowen Han

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China)

  • Guoqing Zhou

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
    Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541004, China)

Abstract

Soil conservation (SC) plays a vital role in preventing soil erosion and ensuring ecological security. While current research on SC primarily focuses on historical spatiotemporal variations, there remains a dearth of sufficient simulation research exploring future development scenarios. In this study, simulations were applied to the source of Yellow River (SYR), a representative ecologically fragile area. Satellite remote sensing and product data, including precipitation, soil, land use/cover, DEM, and SPOT/VEGETATION NDVI, were utilized. The historical and future evolutionary trends of SC in the SYR were quantitatively assessed using the Revised Universal Soil Loss Equation (RUSLE) and trend analysis method, and the geographical detector was employed to explore the forces driving spatial differentiations in SC. The results demonstrated that: (1) 2000–2020, the spatial heterogeneity of SC in the SYR was characterized by the distribution of “gradually decreasing from Southeast to Northwest”, demonstrated a trend of “increasing, decreasing, and then increasing”. (2) Under the diverse development scenarios, the trend of SC change in the SYR was predominantly rising, and the natural change scenario (NCS) > ecological conservation scenario (ECS) > economic expansion scenario (EES). (3) Slope was the most important single driver affecting the spatiotemporal differentiation of SC, and the interaction of slope with average annual precipitation, and NDVI on the spatiotemporal heterogeneity of SC had the strongest explanatory ability. The results can serve as a scientific basis for regional SC and ecological protection and construction of the SYR.

Suggested Citation

  • Ming Ling & Jianjun Chen & Yanping Lan & Zizhen Chen & Haotian You & Xiaowen Han & Guoqing Zhou, 2024. "Exploring the Drivers of Soil Conservation Variation in the Source of Yellow River under Diverse Development Scenarios from a Geospatial Perspective," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:777-:d:1320248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel, 2006. "Soil Erosion: A Food and Environmental Threat," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(1), pages 119-137, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semih Ediş & Özgür Burhan Timur & Gamze Tuttu & İbrahim Aytaş & Ceyhun Göl & Ali Uğur Özcan, 2023. "Assessing the Impact of Engineering Measures and Vegetation Restoration on Soil Erosion: A Case Study in Osmancık, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
    2. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    3. Andrea Koch & Alex McBratney & Mark Adams & Damien Field & Robert Hill & John Crawford & Budiman Minasny & Rattan Lal & Lynette Abbott & Anthony O'Donnell & Denis Angers & Jeffrey Baldock & Edward Bar, 2013. "Soil Security: Solving the Global Soil Crisis," Global Policy, London School of Economics and Political Science, vol. 4(4), pages 434-441, November.
    4. Aznarul Islam & Sanat Kumar Guchhait, 2017. "Search for social justice for the victims of erosion hazard along the banks of river Bhagirathi by hydraulic control: a case study of West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 433-459, April.
    5. Guoping Zhang & Mwanjalolo J.G. Majaliwa & Jian Xie, 2020. "Leveraging the Landscape," World Bank Publications - Reports 33911, The World Bank Group.
    6. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    7. Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Josef HOLEC & Zdeněk KVÍZ & Luděk PROCHÁZKA, 2017. "Splash erosion in maize crops under conservation management in combination with shallow strip-tillage before sowing," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(2), pages 106-116.
    8. López-Vicente, M. & Navas, A. & Gaspar, L. & Machín, J., 2013. "Advanced modelling of runoff and soil redistribution for agricultural systems: The SERT model," Agricultural Water Management, Elsevier, vol. 125(C), pages 1-12.
    9. Banerjee, Onil & Crossman, Neville & Vargas, Renato & Brander, Luke & Verburg, Peter & Cicowiez, Martin & Hauck, Jennifer & McKenzie, Emily, 2020. "Global socio-economic impacts of changes in natural capital and ecosystem services: State of play and new modeling approaches," Ecosystem Services, Elsevier, vol. 46(C).
    10. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    11. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    12. Melese Baye Hailu & S. K. Mishra & Sanjay K. Jain, 2024. "Sediment yield modelling and prioritization of erosion-prone sub-basins in the Tekeze watershed, Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19855-19870, August.
    13. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    14. Habtamu Tilahun Kassahun & Bo Jellesmark Thorsen & Joffre Swait & Jette Bredahl Jacobsen, 2020. "Social Cooperation in the Context of Integrated Private and Common Land Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 105-136, January.
    15. Anna Vatsanidou & Spyros Fountas & Vasileios Liakos & George Nanos & Nikolaos Katsoulas & Theofanis Gemtos, 2020. "Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    16. Sacchi, Laura Valeria & Powell, Priscila Ana & Gasparri, Nestor Ignacio & Grau, Ricardo, 2017. "Air quality loss in urban centers of the Argentinean Dry Chaco: Wind and dust control as two scientifically neglected ecosystem services," Ecosystem Services, Elsevier, vol. 24(C), pages 234-240.
    17. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    18. Manuel Matisic & Marko Reljic & Ivan Dugan & Paulo Pereira & Vilim Filipovic & Lana Filipovic & Vedran Krevh & Igor Bogunovic, 2023. "Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut ( Corylus avellana L.) in Croatia," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    19. Katherine del Carmen Camacho-Zorogastúa & Julio Cesar Minga & Jhon Walter Gómez-Lora & Víctor Hugo Gallo-Ramos & Victor Garcés Díaz, 2023. "Evaluation of Soil Loss and Sediment Yield Based on GIS and Remote Sensing Techniques in a Complex Amazon Mountain Basin of Peru: Case Study Mayo River Basin, San Martin Region," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    20. Leonid Gokhberg & Ilya Kuzminov & Pavel Bakhtin & Elena Tochilina & Alexander Chulok & Anton Timofeev & Alina Lavrinenko, 2017. "Big-Data-Augmented Approach to Emerging Technologies Identification: Case of Agriculture and Food Sector," HSE Working papers WP BRP 76/STI/2017, National Research University Higher School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:777-:d:1320248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.