IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1308-d1584702.html
   My bibliography  Save this article

Revealing the Exacerbated Drought Stress Impacts on Regional Vegetation Ecosystems in Karst Areas with Vegetation Indices: A Case Study of Guilin, China

Author

Listed:
  • Zijian Gao

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
    Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
    These authors contributed equally to this work.)

  • Wen He

    (Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
    These authors contributed equally to this work.)

  • Yuefeng Yao

    (College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China
    Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China)

  • Jinjun Huang

    (Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China)

Abstract

Global warming has exacerbated the impact of regional drought on vegetation ecosystems, especially in typical karst areas with fragile ecosystems that are more severely affected by drought. However, the response mechanisms of vegetation ecosystems in karst areas to drought stress are still uncertain. With drought stress in the summer of 2022, we examined the spatiotemporal patterns of drought in a World Heritage karst site, Guilin, China, and revealed the exacerbated drought impacts on vegetation ecosystems in karst areas with various vegetation indices. Firstly, we analyzed the spatiotemporal characteristics of drought from 2000 to 2022, utilizing the temperature vegetation dryness index (TVDI), highlighting the intra-annual variability of drought in 2022. Additionally, we compared the responses of different vegetation types to drought stress in karst and non-karst areas and explored the exacerbated impacts of drought stress on vegetation ecosystems within the same year with three vegetation indices, namely, the Normalized Difference Vegetation Index (NDVI), Leaf Area index (LAI), and Gross Primary Production (GPP) in karst areas. The results showed that drought started in July and persisted from August to November at moderate to severe levels (with severe drought in September), eventually easing in December. Karst areas exhibited severe drought (TVDI = 0.76), which more significantly impacted regional vegetation ecosystems than those in non-karst areas. Different vegetation types also experienced greater drought stress in karst areas compared to non-karst areas. The vegetation indices increased at the early- to mid-stages of drought (July to September) compared to those in the baseline year (2020–2021), mainly due to the increase in non-karst areas. However, vegetation indices decreased at the late drought stage (October to November), primarily due to the decrease in karst areas, indicating that the karst topography exacerbated the impact of drought on regional vegetation ecosystems. Since LAI and GPP exhibited similar changing patterns to TVDI, with GPP showing particularly strong alignment, they can be used to reveal the response mechanisms of ecosystems to drought stress in karst areas. We emphasize the importance of monitoring the responses of vegetation ecosystems to climate-induced droughts stress and enhancing their resilience to future climatic challenges, particularly in karst areas.

Suggested Citation

  • Zijian Gao & Wen He & Yuefeng Yao & Jinjun Huang, 2025. "Revealing the Exacerbated Drought Stress Impacts on Regional Vegetation Ecosystems in Karst Areas with Vegetation Indices: A Case Study of Guilin, China," Sustainability, MDPI, vol. 17(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1308-:d:1584702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1308/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1308/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marijn Velde & Francesco Tubiello & Anton Vrieling & Fayçal Bouraoui, 2012. "Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data," Climatic Change, Springer, vol. 113(3), pages 751-765, August.
    2. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    3. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    4. Julián Benitez & Roger Domecq, 2014. "Analysis of meteorological drought episodes in Paraguay," Climatic Change, Springer, vol. 127(1), pages 15-25, November.
    5. Brendan Choat & Steven Jansen & Tim J. Brodribb & Hervé Cochard & Sylvain Delzon & Radika Bhaskar & Sandra J. Bucci & Taylor S. Feild & Sean M. Gleason & Uwe G. Hacke & Anna L. Jacobsen & Frederic Len, 2012. "Global convergence in the vulnerability of forests to drought," Nature, Nature, vol. 491(7426), pages 752-755, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minxia Zhang & Shulin Chen & Hong Jiang & Yong Lin & Jinmeng Zhang & Xinzhang Song & Guomo Zhou, 2019. "Water-Use Characteristics and Physiological Response of Moso Bamboo to Flash Droughts," IJERPH, MDPI, vol. 16(12), pages 1-18, June.
    2. Peipei Xu & Tao Zhou & Chuixiang Yi & Hui Luo & Xiang Zhao & Wei Fang & Shan Gao & Xia Liu, 2018. "Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    3. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    4. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    5. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    6. Scheiter, Simon & Kumar, Dushyant & Pfeiffer, Mirjam & Langan, Liam, 2024. "Modeling drought mortality and resilience of savannas and forests in tropical Asia," Ecological Modelling, Elsevier, vol. 494(C).
    7. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    8. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    9. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.
    11. Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201605, University of Turin.
    12. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Krishna, Dyvavani K. & Watham, Taibanganba & Padalia, Hitendra & Srinet, Ritika & Nandy, Subrata, 2023. "Improved gross primary productivity estimation using semi empirical (PRELES) model for moist Indian sal forest," Ecological Modelling, Elsevier, vol. 475(C).
    14. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    15. Yang Yang & Tianxiang Yue, 2024. "Variations of Global Compound Temperature and Precipitation Events and Associated Population Exposure Projected by the CMIP6 Multi-Model Ensemble," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    16. Reidsma, Pytrik & Ewert, Frank & Boogaard, Hendrik & Diepen, Kees van, 2009. "Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields," Agricultural Systems, Elsevier, vol. 100(1-3), pages 51-60, April.
    17. Rada Matić & Srđan Stamenković & Zorica Popović & Milena Stefanović & Vera Vidaković & Miroslava Smiljanić & Srđan Bojović, 2015. "Tree responses, tolerance and acclimation to stress: Does current research depend on the cultivation status of studied species?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1209-1222, November.
    18. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Gao, Yukun & Zhao, Hongfang & Zhao, Chuang & Hu, Guohua & Zhang, Han & Liu, Xue & Li, Nan & Hou, Haiyan & Li, Xia, 2022. "Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China," Agricultural Water Management, Elsevier, vol. 270(C).
    20. Dardonville, Manon & Bockstaller, Christian & Villerd, Jean & Therond, Olivier, 2022. "Resilience of agricultural systems: biodiversity-based systems are stable, while intensified ones are resistant and high-yielding," Agricultural Systems, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1308-:d:1584702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.