IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i6p1257-d152334.html
   My bibliography  Save this article

Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height

Author

Listed:
  • Peipei Xu

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    School of Earth and Environment Science, Queens College of the City University of New York, New York, NY 11367, USA)

  • Tao Zhou

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Chuixiang Yi

    (School of Earth and Environment Science, Queens College of the City University of New York, New York, NY 11367, USA)

  • Hui Luo

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xiang Zhao

    (State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing 100875, China)

  • Wei Fang

    (School of Earth and Environment Science, Queens College of the City University of New York, New York, NY 11367, USA)

  • Shan Gao

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xia Liu

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

Global climate change is leading to an increase in the frequency, intensity, and duration of drought events, which can affect the functioning of forest ecosystems. Because human activities such as afforestation and forest attributes such as canopy height may exhibit considerable spatial differences, such differences may alter the recovery paths of drought-impacted forests. To accurately assess how climate affects forest recovery, a quantitative evaluation on the effects of forest attributes and their possible interaction with the intensity of water stress is required. Here, forest recovery following extreme drought events was analyzed for Yunnan Province, southwest China. The variation in the recovery of forests with different water availability and canopy heights was quantitatively assessed at the regional scale by using canopy height data based on light detection and ranging (LiDAR) measurements, enhanced vegetation index data, and standardized precipitation evapotranspiration index (SPEI) data. Our results indicated that forest recovery was affected by water availability and canopy height. Based on the enhanced vegetation index measures, shorter trees were more likely to recover than taller ones after drought. Further analyses demonstrated that the effect of canopy height on recovery rates after drought also depends on water availability—the effect of canopy height on recovery diminished as water availability increased after drought. Additional analyses revealed that when the water availability exceeded a threshold (SPEI > 0.85), no significant difference in the recovery was found between short and tall trees ( p > 0.05). In the context of global climate change, future climate scenarios of RCP2.6 and RCP8.5 showed more frequent water stress in Yunnan by the end of the 21st century. In summary, our results indicated that canopy height casts an important influence on forest recovery and tall trees have greater vulnerability and risk to dieback and mortality from drought. These results may have broad implications for policies and practices of forest management.

Suggested Citation

  • Peipei Xu & Tao Zhou & Chuixiang Yi & Hui Luo & Xiang Zhao & Wei Fang & Shan Gao & Xia Liu, 2018. "Impacts of Water Stress on Forest Recovery and Its Interaction with Canopy Height," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:6:p:1257-:d:152334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/6/1257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/6/1257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    2. Valentin Bellassen & Sebastiaan Luyssaert, 2014. "Carbon sequestration: Managing forests in uncertain times," Nature, Nature, vol. 506(7487), pages 153-155, February.
    3. Brendan Choat & Steven Jansen & Tim J. Brodribb & Hervé Cochard & Sylvain Delzon & Radika Bhaskar & Sandra J. Bucci & Taylor S. Feild & Sean M. Gleason & Uwe G. Hacke & Anna L. Jacobsen & Frederic Len, 2012. "Global convergence in the vulnerability of forests to drought," Nature, Nature, vol. 491(7426), pages 752-755, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shibao Lu & Yizi Shang & Hongbo Zhang, 2020. "Evaluation on Early Drought Warning System in the Jinghui Channel Irrigation Area," IJERPH, MDPI, vol. 17(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minxia Zhang & Shulin Chen & Hong Jiang & Yong Lin & Jinmeng Zhang & Xinzhang Song & Guomo Zhou, 2019. "Water-Use Characteristics and Physiological Response of Moso Bamboo to Flash Droughts," IJERPH, MDPI, vol. 16(12), pages 1-18, June.
    2. Akhlaq Amin Wani & Amir Farooq Bhat & Aaasif Ali Gatoo & Shiba Zahoor & Basira Mehraj & Naveed Najam & Qaisar Shafi Wani & M A Islam & Shah Murtaza & Moonisa Aslam Dervash & P K Joshi, 2021. "Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-22, January.
    3. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    4. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    5. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    6. Diyamandoglu, Vasil & Fortuna, Lorena M., 2015. "Deconstruction of wood-framed houses: Material recovery and environmental impact," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 21-30.
    7. Scheiter, Simon & Kumar, Dushyant & Pfeiffer, Mirjam & Langan, Liam, 2024. "Modeling drought mortality and resilience of savannas and forests in tropical Asia," Ecological Modelling, Elsevier, vol. 494(C).
    8. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    9. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.
    11. Asitha De Silva & Dilanthi Amaratunga & Richard Haigh, 2022. "Green and Blue Infrastructure as Nature-Based Better Preparedness Solutions for Disaster Risk Reduction: Key Policy Aspects," Sustainability, MDPI, vol. 14(23), pages 1-26, December.
    12. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Krishna, Dyvavani K. & Watham, Taibanganba & Padalia, Hitendra & Srinet, Ritika & Nandy, Subrata, 2023. "Improved gross primary productivity estimation using semi empirical (PRELES) model for moist Indian sal forest," Ecological Modelling, Elsevier, vol. 475(C).
    14. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    15. Yang Yang & Tianxiang Yue, 2024. "Variations of Global Compound Temperature and Precipitation Events and Associated Population Exposure Projected by the CMIP6 Multi-Model Ensemble," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    16. Jean C. Bikomeye & Sima Namin & Chima Anyanwu & Caitlin S. Rublee & Jamie Ferschinger & Ken Leinbach & Patricia Lindquist & August Hoppe & Lawrence Hoffman & Justin Hegarty & Dwayne Sperber & Kirsten , 2021. "Resilience and Equity in a Time of Crises: Investing in Public Urban Greenspace Is Now More Essential Than Ever in the US and Beyond," IJERPH, MDPI, vol. 18(16), pages 1-39, August.
    17. Kadukothanahally Nagaraju Shivaprakash & Niraj Swami & Sagar Mysorekar & Roshni Arora & Aditya Gangadharan & Karishma Vohra & Madegowda Jadeyegowda & Joseph M. Kiesecker, 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    18. Juan F. Fernández-Manjarrés & Paloma Ruiz-Benito & Miguel A. Zavala & J. Julio Camarero & Fernando Pulido & Vânia Proença & Laetitia Navarro & Roxane Sansilvestri & Elena Granda & Laura Marqués & Mart, 2018. "Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case of the Mediterranean-Temperate Transition in South-Western Europe," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    19. Baranzini, Andrea & Borzykowski, Nicolas & Carattini, Stefano, 2018. "Carbon offsets out of the woods? Acceptability of domestic vs. international reforestation programmes in the lab," Journal of Forest Economics, Elsevier, vol. 32(C), pages 1-12.
    20. Blattert, Clemens & Lemm, Renato & Thürig, Esther & Stadelmann, Golo & Brändli, Urs-Beat & Temperli, Christian, 2020. "Long-term impacts of increased timber harvests on ecosystem services and biodiversity: A scenario study based on national forest inventory data," Ecosystem Services, Elsevier, vol. 45(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:6:p:1257-:d:152334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.