IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1058-d1578678.html
   My bibliography  Save this article

Research on Physically Constrained VMD-CNN-BiLSTM Wind Power Prediction

Author

Listed:
  • Yongkang Liu

    (College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, China)

  • Yi Gu

    (College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063210, China)

  • Yuwei Long

    (College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063210, China)

  • Qinyu Zhang

    (College of Science, North China University of Science and Technology, Tangshan 063210, China)

  • Yonggang Zhang

    (College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, China)

  • Xu Zhou

    (College of Science, North China University of Science and Technology, Tangshan 063210, China)

Abstract

Accurate forecasting of wind power is crucial for addressing energy demands, promoting sustainable energy practices, and mitigating environmental challenges. In order to improve the prediction accuracy of wind power, a VMD-CNN-BiLSTM hybrid model with physical constraints is proposed in this paper. Initially, the isolation forest algorithm identifies samples that deviate from actual power outputs, and the LightGBM algorithm is used to reconstruct the abnormal samples. Then, leveraging the variational mode decomposition (VMD) approach, the reconstructed data are decomposed into 13 sub-signals. Each sub-signal is trained using a CNN-BiLSTM model, yielding individual prediction results. Finally, the XGBoost algorithm is introduced to add the physical penalty term to the loss function. The predicted value of each sub-signal is taken as the input to get the predicted result of wind power. The hybrid model is applied to the 12 h forecast of a wind farm in Zhangjiakou City, Hebei province. Compared with other hybrid forecasting models, this model has the highest score on five performance indicators and can provide reference for wind farm generation planning, safe grid connection, real-time power dispatching, and practical application of sustainable energy.

Suggested Citation

  • Yongkang Liu & Yi Gu & Yuwei Long & Qinyu Zhang & Yonggang Zhang & Xu Zhou, 2025. "Research on Physically Constrained VMD-CNN-BiLSTM Wind Power Prediction," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1058-:d:1578678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    2. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
    3. Chen, Yuejiang & Xiao, Jiang-Wen & Wang, Yan-Wu & Luo, Yunfeng, 2025. "Non-crossing quantile probabilistic forecasting of cluster wind power considering spatio-temporal correlation," Applied Energy, Elsevier, vol. 377(PA).
    4. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    5. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    6. Han, Li & Jing, Huitian & Zhang, Rongchang & Gao, Zhiyu, 2019. "Wind power forecast based on improved Long Short Term Memory network," Energy, Elsevier, vol. 189(C).
    7. Jianchun Geng & Lili Wen, 2024. "A short-term wind speed prediction method based on the BLS–RVM hybrid model," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 613-618.
    8. Yang, Mao & Wang, Da & Zhang, Wei, 2024. "A novel ultra short-term wind power prediction model based on double model coordination switching mechanism," Energy, Elsevier, vol. 289(C).
    9. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    10. Zhiyong Guo & Fangzheng Wei & Wenkai Qi & Qiaoli Han & Huiyuan Liu & Xiaomei Feng & Minghui Zhang, 2024. "A Time Series Prediction Model for Wind Power Based on the Empirical Mode Decomposition–Convolutional Neural Network–Three-Dimensional Gated Neural Network," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    2. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    3. Zifa Liu & Xinyi Li & Haiyan Zhao, 2023. "Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction," Energies, MDPI, vol. 16(10), pages 1-24, May.
    4. Xiaoshuang Huang & Yinbao Zhang & Jianzhong Liu & Xinjia Zhang & Sicong Liu, 2023. "A Short-Term Wind Power Forecasting Model Based on 3D Convolutional Neural Network–Gated Recurrent Unit," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    5. Wang, Jianguo & Yuan, Weiru & Zhang, Shude & Cheng, Shun & Han, Lincheng, 2024. "Implementing ultra-short-term wind power forecasting without information leakage through cascade decomposition and attention mechanism," Energy, Elsevier, vol. 312(C).
    6. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    7. Yi Wang & Zhengxiang He & Liguan Wang, 2021. "Truck Driver Fatigue Detection Based on Video Sequences in Open-Pit Mines," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    8. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    9. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    10. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    12. Yanan Xue & Jinliang Yin & Xinhao Hou, 2024. "Short-Term Wind Power Prediction Based on Multi-Feature Domain Learning," Energies, MDPI, vol. 17(13), pages 1-25, July.
    13. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    14. Yang, Mao & Wang, Da & Zhang, Wei & Yv, Xinnan, 2024. "A centralized power prediction method for large-scale wind power clusters based on dynamic graph neural network," Energy, Elsevier, vol. 310(C).
    15. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    16. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    17. Yifei Deng & Yijing Wang & Xiaofan Xing & Yuankang Xiong & Siqing Xu & Rong Wang, 2024. "Requirement on the Capacity of Energy Storage to Meet the 2 °C Goal," Sustainability, MDPI, vol. 16(9), pages 1-17, April.
    18. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    19. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    20. Guoqing An & Ziyao Jiang & Libo Chen & Xin Cao & Zheng Li & Yuyang Zhao & Hexu Sun, 2021. "Ultra Short-Term Wind Power Forecasting Based on Sparrow Search Algorithm Optimization Deep Extreme Learning Machine," Sustainability, MDPI, vol. 13(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1058-:d:1578678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.