IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033577.html
   My bibliography  Save this article

Fully connected multi-reservoir echo state networks for wind power prediction

Author

Listed:
  • Yao, Xianshuang
  • Guo, Kangshuai
  • Lei, Jianqi
  • Li, Xuanyu

Abstract

In this paper, considering the complex relationship between wind speed variation characteristics and data features, a fully connected multi-reservoir echo state network (FCMR-ESN) is proposed for wind power generation prediction, which can handle some issues such as insufficient extraction of data features and a gradual decline in memory capacity. Firstly, the Spearman correlation coefficient is used to calculate the correlation between the characteristic data. Secondly, the fully connected neurons are applied to the connections between the reservoirs. The fully connected layer can capture the complex nonlinear relationships in the wind power data and effectively map them to the prediction results. Thirdly, the reservoir parameters and the connection coefficients between the reservoirs are optimized using the improved weighted mean of vectors (INFO). Finally, The effectiveness of FCMR-ESN prediction is demonstrated through prediction experiments conducted on two sets of datasets with different lengths from different regions. In the one-day time prediction for the first set of data, the MAPE decreases to 2.90%. The MAPE for the three-day prediction in the second data set is reduced to 3.53%.

Suggested Citation

  • Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033577
    DOI: 10.1016/j.energy.2024.133579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Mingju & Yan, Changcheng & Xu, Wei & Zhao, Zhixuan & Li, Wenxiang & Liu, Yan & Li, Sheng, 2023. "Short-term wind power forecasting model based on temporal convolutional network and Informer," Energy, Elsevier, vol. 283(C).
    2. Zhong, Mingwei & Fan, Jingmin & Luo, Jianqiang & Xiao, Xuanyi & He, Guanglin & Cai, Rui, 2024. "InfoCAVB-MemoryFormer: Forecasting of wind and photovoltaic power through the interaction of data reconstruction and data augmentation," Applied Energy, Elsevier, vol. 371(C).
    3. Tang, Zhenhao & Wang, Shikui & Li, Yue, 2024. "Dynamic NOX emission concentration prediction based on the combined feature selection algorithm and deep neural network," Energy, Elsevier, vol. 292(C).
    4. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    5. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    6. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    7. Liu, Lei & Liu, Jicheng & Ye, Yu & Liu, Hui & Chen, Kun & Li, Dong & Dong, Xue & Sun, Mingzhai, 2023. "Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty," Renewable Energy, Elsevier, vol. 205(C), pages 598-607.
    8. Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).
    9. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    2. Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
    3. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    4. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    5. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    6. Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
    7. Jie Du & Shuaizhi Chen & Linlin Pan & Yubao Liu, 2025. "A Wind Speed Prediction Method Based on Signal Decomposition Technology Deep Learning Model," Energies, MDPI, vol. 18(5), pages 1-26, February.
    8. Yang, Wendong & Zang, Xinyi & Wu, Chunying & Hao, Yan, 2024. "A new multi-objective ensemble wind speed forecasting system: Mixed-frequency interval-valued modeling paradigm," Energy, Elsevier, vol. 304(C).
    9. Chen, Yuejiang & He, Yingjing & Xiao, Jiang-Wen & Wang, Yan-Wu & Li, Yuanzheng, 2024. "Hybrid model based on similar power extraction and improved temporal convolutional network for probabilistic wind power forecasting," Energy, Elsevier, vol. 304(C).
    10. Arooj, Qumrish, 2024. "FedWindT: Federated learning assisted transformer architecture for collaborative and secure wind power forecasting in diverse conditions," Energy, Elsevier, vol. 309(C).
    11. Chen, Yunxiao & Lin, Chaojing & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2024. "Proactive failure warning for wind power forecast models based on volatility indicators analysis," Energy, Elsevier, vol. 305(C).
    12. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    13. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    14. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    15. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    16. Wang, Ying & Li, Hongmin & Jahanger, Atif & Li, Qiwei & Wang, Biao & Balsalobre-Lorente, Daniel, 2024. "A novel ensemble electricity load forecasting system based on a decomposition-selection-optimization strategy," Energy, Elsevier, vol. 312(C).
    17. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    18. Yang, Mao & Wang, Da & Zhang, Wei & Yv, Xinnan, 2024. "A centralized power prediction method for large-scale wind power clusters based on dynamic graph neural network," Energy, Elsevier, vol. 310(C).
    19. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    20. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.