IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1028-d1578314.html
   My bibliography  Save this article

Power Demand Patterns of Public Electric Vehicle Charging: A 2030 Forecast Based on Real-Life Data

Author

Listed:
  • Marco Baronchelli

    (Department of Energy, Politecnico di Milano, 20156 Milano, Italy)

  • Davide Falabretti

    (Department of Energy, Politecnico di Milano, 20156 Milano, Italy)

  • Francesco Gulotta

    (Department of Energy System Development, Ricerca sul Sistema Energetico, 20134 Milano, Italy)

Abstract

As the adoption of electric vehicles accelerates, understanding the impact of public charging on the power grid is crucial. However, today, a notable gap exists in the literature regarding approaches capable of accurately estimating the expected influence of e-mobility power demand on electrical grids, especially at medium and low voltage levels. To fill this gap, in this study, a procedure is proposed to estimate the power demand patterns of public car parks in a 2030 scenario. To this end, data collected from real-life car parks in Italy are used in Monte Carlo simulations, where probabilistic daily power demand curves are created with different maximum charging powers (from 7.4 kW to ultra-fast charging). The results highlight high variability in the power demand depending on the location and type of car park. City center car parks exhibit peak demand during morning hours, linked to commercial activities, while car parks near railway stations and hospitals show demand patterns aligned with transportation and healthcare needs. Business area car parks, in contrast, have a more pronounced demand during work hours on weekdays, with much lower activity during weekends. This study also demonstrates that, in some situations, ultra-fast charging can increase peak power demand from the grid by up to 210%. Given their contribution to the existing literature, the power demand patterns from this research constitute a valuable starting point for future studies aimed at quantitatively assessing the impact of e-mobility on the power system. In addition, they can effectively support decision-makers in optimally designing the e-mobility recharge infrastructure.

Suggested Citation

  • Marco Baronchelli & Davide Falabretti & Francesco Gulotta, 2025. "Power Demand Patterns of Public Electric Vehicle Charging: A 2030 Forecast Based on Real-Life Data," Sustainability, MDPI, vol. 17(3), pages 1-41, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1028-:d:1578314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raveendran, Visal & Alvarez-Bel, Carlos & Nair, Manjula G., 2020. "Assessing the ancillary service potential of electric vehicles to support renewable energy integration in touristic islands: A case study from Balearic island of Menorca," Renewable Energy, Elsevier, vol. 161(C), pages 495-509.
    2. Tong, Ziqiang & Mansouri, Seyed Amir & Huang, Shoujun & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos, 2023. "The role of smart communities integrated with renewable energy resources, smart homes and electric vehicles in providing ancillary services: A tri-stage optimization mechanism," Applied Energy, Elsevier, vol. 351(C).
    3. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    4. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    5. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    6. Mangipinto, Andrea & Lombardi, Francesco & Sanvito, Francesco Davide & Pavičević, Matija & Quoilin, Sylvain & Colombo, Emanuela, 2022. "Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sagar Hossain & Md. Rokonuzzaman & Kazi Sajedur Rahman & A. K. M. Ahasan Habib & Wen-Shan Tan & Md Mahmud & Shahariar Chowdhury & Sittiporn Channumsin, 2023. "Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    3. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    4. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    5. Velkovski, Bodan & Gjorgievski, Vladimir Z. & Markovski, Blagoja & Cundeva, Snezana & Markovska, Natasa, 2024. "A framework for shared EV charging in residential renewable energy communities," Renewable Energy, Elsevier, vol. 231(C).
    6. He, Ruofan & Wan, Panbing, 2024. "Electricity market integration in China: The role of government officials’ hometown ties," Energy, Elsevier, vol. 303(C).
    7. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    8. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    9. Pla, Benjamín & Bares, Pau & Aronis, André Nakaema & Anuratha, Sanjith, 2024. "Leveraging battery electric vehicle energy storage potential for home energy saving by model predictive control with backward induction," Applied Energy, Elsevier, vol. 372(C).
    10. Izabela Zoltowska, 2024. "Risk Preferences of EV Fleet Aggregators in Day-Ahead Market Bidding: Mean-CVaR Linear Programming Model," Energies, MDPI, vol. 18(1), pages 1-19, December.
    11. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    12. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    13. Sørensen, Åse Lekang & Ludvigsen, Bjørn & Andresen, Inger, 2023. "Grid-connected cabin preheating of Electric Vehicles in cold climates – A non-flexible share of the EV energy use," Applied Energy, Elsevier, vol. 341(C).
    14. Julia Hildermeier & Jaap Burger & Andreas Jahn & Jan Rosenow, 2022. "A Review of Tariffs and Services for Smart Charging of Electric Vehicles in Europe," Energies, MDPI, vol. 16(1), pages 1-13, December.
    15. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    16. Liu, Ke & Liu, Yanli, 2023. "Stochastic user equilibrium based spatial-temporal distribution prediction of electric vehicle charging load," Applied Energy, Elsevier, vol. 339(C).
    17. Yadav, Monika & Pal, Nitai & Saini, Devender Kumar, 2021. "Resilient electrical distribution grid planning against seismic waves using distributed energy resources and sectionalizers: An Indian's urban grid case study," Renewable Energy, Elsevier, vol. 178(C), pages 241-259.
    18. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    19. Han, Jian & Tan, Qinliang & Ding, Yihong & Liu, Yuan, 2024. "Exploring the diffusion of low-carbon power generation and energy storage technologies under electricity market reform in China: An agent-based modeling framework for power sector," Energy, Elsevier, vol. 308(C).
    20. Zaidi, I. & Oulamara, A. & Idoumghar, L. & Basset, M., 2024. "Minimizing grid capacity in preemptive electric vehicle charging orchestration: Complexity, exact and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 312(1), pages 22-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1028-:d:1578314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.