IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014039.html
   My bibliography  Save this article

Enhanced biomass processing towards acetone-butanol-ethanol fermentation using a ternary deep eutectic solvent

Author

Listed:
  • Poy, Helena
  • da Costa Lopes, André M.
  • Lladosa, Estela
  • Gabaldón, Carmen
  • Loras, Sonia
  • Silvestre, Armando J.D.

Abstract

This work evaluated the effectiveness of ternary deep eutectic solvents (DES) composed of cholinium chloride (ChCl), lactic acid (LA) and a diol (ethylene glycol – EG, or 1,6-hexanediol – HEX) in the pretreatment of rice straw (RS) towards the production of biobutanol. The most promising results were obtained with ChCl:LA:EG 1:5:5 at 120 °C for 4 h, which enabled the highest conversion of biomass polysaccharides into glucose and xylose up to 89.3 % and 53.6 % yields, respectively. Subsequently, the produced sugars were efficiently converted into biobutanol through the acetone-butanol-ethanol (ABE) fermentation process, resulting in the production of 95.7 g butanol/kg RS as one of the highest values reported in literature. Thus, the application of the ternary DES ChCl:LA:EG 1:5:5 represents a competitive and environmentally friendly pathway for RS valorization in comparison to conventional processes.

Suggested Citation

  • Poy, Helena & da Costa Lopes, André M. & Lladosa, Estela & Gabaldón, Carmen & Loras, Sonia & Silvestre, Armando J.D., 2023. "Enhanced biomass processing towards acetone-butanol-ethanol fermentation using a ternary deep eutectic solvent," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014039
    DOI: 10.1016/j.renene.2023.119488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Aiping & Yu, Xiaojie & Chen, Li & Okonkwo, Clinton Emeka & Otu, Phyllis & Zhou, Cunshan & Lu, Qiaomin & Sun, Qiaolan, 2023. "Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells," Renewable Energy, Elsevier, vol. 205(C), pages 617-626.
    2. Ouyang, Denghao & Chen, Hongmei & Liu, Nan & Zhang, Jingzhi & Zhao, Xuebing, 2022. "Insight into the negative effects of lignin on enzymatic hydrolysis of cellulose for biofuel production via selective oxidative delignification and inhibitive actions of phenolic model compounds," Renewable Energy, Elsevier, vol. 185(C), pages 196-207.
    3. Yongzhuang Liu & Noemi Deak & Zhiwen Wang & Haipeng Yu & Lisanne Hameleers & Edita Jurak & Peter J. Deuss & Katalin Barta, 2021. "Tunable and functional deep eutectic solvents for lignocellulose valorization," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Yang, Luan & Zheng, Tianran & Huang, Chen & Yao, Jianfeng, 2022. "Using deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin utilization of masson pine," Renewable Energy, Elsevier, vol. 195(C), pages 681-687.
    5. Xie, Junxian & Cheng, Zheng & Zhu, Shiyun & Xu, Jun, 2022. "Lewis base enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis of corn straw and lignin characterization," Renewable Energy, Elsevier, vol. 188(C), pages 320-328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Tianyuan & Hou, Minjie & Guo, Xu & Cao, Xinyu & Li, Changgeng & Zhang, Qi & Jia, Wenchao & Sun, Yanning & Guo, Yanzhu & Shi, Haiqiang, 2024. "Recent progress in deep eutectic solvent(DES) fractionation of lignocellulosic components : A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Guoming Zeng & Xuanhao Fan & Fei Wang & Yang Luo & Dong Liang & Yongguang Han & Pei Gao & Quanfeng Wang & Jiale Wang & Chunyi Yu & Libo Jin & Da Sun, 2023. "Enhanced Rate of Enzymatic Saccharification with the Ionic Liquid Treatment of Corn Straw Activated by Metal Ion Solution," Sustainability, MDPI, vol. 15(1), pages 1-12, January.
    4. Li Xu & Meifang Cao & Jiefeng Zhou & Yuxia Pang & Zhixian Li & Dongjie Yang & Shao-Yuan Leu & Hongming Lou & Xuejun Pan & Xueqing Qiu, 2024. "Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.