IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3387-d1377972.html
   My bibliography  Save this article

China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers

Author

Listed:
  • Jing Tang

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China
    These authors contributed equally to this work.)

  • Xiao Xiao

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China
    These authors contributed equally to this work.)

  • Mengqi Han

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China)

  • Rui Shan

    (Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA)

  • Dungang Gu

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China)

  • Tingting Hu

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China)

  • Guanghui Li

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China)

  • Pinhua Rao

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China)

  • Nan Zhang

    (Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK)

  • Jiaqi Lu

    (Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No. 333 Longteng Road, Songjiang District, Shanghai 201620, China)

Abstract

Facing green trade barriers from developed nations, particularly the EU, based on product carbon footprints, China’s renewable energy industries confront significant challenges in transitioning towards sustainability and low carbon emissions. This study delves into the carbon footprint of China’s renewable infrastructure, evaluating wind turbines, photovoltaic (PV) panels, and lithium batteries across varied decarbonization scenarios, emphasizing both production and international trade transportation. The initial findings for 2022 indicate baseline carbon footprints of 990,701 kg CO 2 -eq/MW for wind turbines, 2994.97 kg CO 2 -eq/kWp for PV panels, and 67.53 kg CO 2 -eq/kWh for batteries. Projections for 2050 suggest that decarbonization advancements could slash these footprints by up to 36.1% for wind turbines, 76.7% for PV panels, and 72.5% for batteries, closely mirroring the EU’s 2050 low-carbon benchmarks. Considerable carbon footprints from both domestic and international transportation have been quantified, underscoring the importance of logistic decarbonization. Based on these results, it is concluded that China’s steadfast commitment to a sustainable and climate-ambitious development path can provide globally competitive, low-carbon renewable infrastructure after 2030. The study advocates for a collaborative approach to product decarbonization across international trade, as opposed to erecting barriers, to effectively contribute to global climate objectives.

Suggested Citation

  • Jing Tang & Xiao Xiao & Mengqi Han & Rui Shan & Dungang Gu & Tingting Hu & Guanghui Li & Pinhua Rao & Nan Zhang & Jiaqi Lu, 2024. "China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3387-:d:1377972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahsan, Nabeel & Hewage, Kasun & Razi, Faran & Hussain, Syed Asad & Sadiq, Rehan, 2023. "A critical review of sustainable rail technologies based on environmental, economic, social, and technical perspectives to achieve net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Zhao, Ning & You, Fengqi, 2020. "Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?," Applied Energy, Elsevier, vol. 279(C).
    3. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    5. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    2. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    3. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    4. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    5. Chwiłkowska-Kubala, Anna & Cyfert, Szymon & Malewska, Kamila & Mierzejewska, Katarzyna & Szumowski, Witold, 2023. "The impact of resources on digital transformation in energy sector companies. The role of readiness for digital transformation," Technology in Society, Elsevier, vol. 74(C).
    6. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    7. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    8. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    9. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    10. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    11. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    12. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    13. Lund, P.D., 2007. "Upfront resource requirements for large-scale exploitation schemes of new renewable technologies," Renewable Energy, Elsevier, vol. 32(3), pages 442-458.
    14. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    15. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    16. Hassanien, Reda Hassanien Emam & Li, Ming & Yin, Fang, 2018. "The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production," Renewable Energy, Elsevier, vol. 121(C), pages 377-388.
    17. Lohse, Christiane, 2018. "Environmental impact by hydrogeothermal energy generation in low-enthalpy regions," Renewable Energy, Elsevier, vol. 128(PB), pages 509-519.
    18. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    19. Franck Lecocq & Alain Nadaï & Christophe Cassen, 2022. "Getting models and modellers to inform deep decarbonization strategies," Climate Policy, Taylor & Francis Journals, vol. 22(6), pages 695-710, July.
    20. Alberto Benato & Alarico Macor, 2021. "Costs to Reduce the Human Health Toxicity of Biogas Engine Emissions," Energies, MDPI, vol. 14(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3387-:d:1377972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.