Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.06.064
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
- Higo, Masashi & Dowaki, Kiyoshi, 2010. "A Life Cycle Analysis on a Bio-DME production system considering the species of biomass feedstock in Japan and Papua New Guinea," Applied Energy, Elsevier, vol. 87(1), pages 58-67, January.
- Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
- Heller, Martin C & Keoleian, Gregory A & Mann, Margaret K & Volk, Timothy A, 2004. "Life cycle energy and environmental benefits of generating electricity from willow biomass," Renewable Energy, Elsevier, vol. 29(7), pages 1023-1042.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
- Sakaguchi, Takushi & Tabata, Tomohiro, 2015. "100% electric power potential of PV, wind power, and biomass energy in Awaji island Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1156-1165.
- Nishiguchi, Sho & Tabata, Tomohiro, 2016. "Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1279-1286.
- Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
- Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
- Wang, Zhiwei & Lei, Tingzhou & Yang, Miao & Li, Zaifeng & Qi, Tian & Xin, Xiaofei & He, Xiaofeng & Ajayebi, Atta & Yan, Xiaoyu, 2017. "Life cycle environmental impacts of cornstalk briquette fuel in China," Applied Energy, Elsevier, vol. 192(C), pages 83-94.
- Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
- Song, Shizhong & Liu, Pei & Xu, Jing & Chong, Chinhao & Huang, Xianzheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2017. "Life cycle assessment and economic evaluation of pellet fuel from corn straw in China: A case study in Jilin Province," Energy, Elsevier, vol. 130(C), pages 373-381.
- Shahjadi Hisan Farjana & Olubukola Tokede & Mahmud Ashraf, 2023. "Environmental Impact Assessment of Waste Wood-to-Energy Recovery in Australia," Energies, MDPI, vol. 16(10), pages 1-22, May.
- Judl, Jáchym & Koskela, Sirkka & Korpela, Timo & Karvosenoja, Niko & Häyrinen, Anna & Rantsi, Jari, 2014. "Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland," Energy, Elsevier, vol. 77(C), pages 844-851.
- Zhou, J. & Tabata, T., 2022. "Economic, societal, and environmental evaluation of woody biomass heat utilization: A case study in Kobe, Japan," Renewable Energy, Elsevier, vol. 188(C), pages 256-268.
- Moon, Dami & Kitagawa, Naomi & Genchi, Yutaka, 2015. "CO2 emissions and economic impacts of using logging residues and mill residues in Maniwa Japan," Forest Policy and Economics, Elsevier, vol. 50(C), pages 163-171.
- Martín-Gamboa, Mario & Marques, Pedro & Freire, Fausto & Arroja, Luís & Dias, Ana Cláudia, 2020. "Life cycle assessment of biomass pellets: A review of methodological choices and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
- Naoharu Murasawa & Hiroshi Koseki & Yusaku Iwata & Takabumi Sakamoto, 2018. "Evaluating the Fires and Oxygen Deficiency Risks Caused by Stored Agricultural Waste," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
- Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
- Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
- Naoharu Murasawa & Hiroshi Koseki, 2015. "Investigation of Heat Generation from Biomass Fuels," Energies, MDPI, vol. 8(6), pages 1-16, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
- Saner, Dominik & Juraske, Ronnie & Kübert, Markus & Blum, Philipp & Hellweg, Stefanie & Bayer, Peter, 2010. "Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1798-1813, September.
- Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
- Yang, Jin & Chen, Bin, 2014. "Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective," Applied Energy, Elsevier, vol. 122(C), pages 269-279.
- Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
- Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
- Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
- Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
- Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
- Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
- Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
- Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
- Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
- Marina Moreira & Ivan Felipe Silva Santos & Lilian Ferreira Freitas & Flávio Ferreira Freitas & Regina Mambeli Barros & Geraldo Lúcio Tiago Filho, 2022. "Energy and economic analysis for a desalination plant powered by municipal solid waste incineration and natural gas in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1799-1826, February.
- Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
- Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
- Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
- Lund, P.D., 2007. "Upfront resource requirements for large-scale exploitation schemes of new renewable technologies," Renewable Energy, Elsevier, vol. 32(3), pages 442-458.
More about this item
Keywords
Woody biomass; Energy recovery; Wood pellet; Municipal solid waste; Life cycle inventory; Economic ripple effect;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:944-951. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.