IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v185y2023ics1364032123004781.html
   My bibliography  Save this article

A critical review of sustainable rail technologies based on environmental, economic, social, and technical perspectives to achieve net zero emissions

Author

Listed:
  • Ahsan, Nabeel
  • Hewage, Kasun
  • Razi, Faran
  • Hussain, Syed Asad
  • Sadiq, Rehan

Abstract

Rapidly increasing catastrophic environmental incidents and changes in global climate have compelled researchers to take proactive measures for climate change mitigation. Consequently, reducing greenhouse gas emissions has become one of the most significant global targets. The transportation sector has a massive carbon footprint accounting for 22% of the total carbon dioxide emissions. In this regard, road transport contributes the largest fraction of the total emissions within the transportation sector. Conversely, the railway which is the cleanest form of transportation contributes slightly more than 1% of the total emissions. Moreover, since most of the rail systems are operated by government or private companies, it is relatively convenient to implement policies and replace conventional technology with environmentally friendly ones. This could be achieved by taking certain measures from technical and operational viewpoints for conserving energy to lower the carbon intensity of all transport modalities. Hence, this review paper focuses on investigating the railway sector to encourage a modal shift to the least carbon-intensive option. This study provides a critical review of the past and present rail technologies in terms of the environmental, economic, social, and technical perspectives. Moreover, a comparative assessment of the various locomotive types has been performed. The results reveal that battery-hydrogen hybrid locomotives are the best choice to be considered as a future locomotive technology. Hydrogen locomotives have the potential to be a promising alternative to diesel railway locomotives. However, certain technical barriers need to be overcome to enhance the overall system's performance and reliability to further improve the viability of its deployment in the railway sector.

Suggested Citation

  • Ahsan, Nabeel & Hewage, Kasun & Razi, Faran & Hussain, Syed Asad & Sadiq, Rehan, 2023. "A critical review of sustainable rail technologies based on environmental, economic, social, and technical perspectives to achieve net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004781
    DOI: 10.1016/j.rser.2023.113621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuela Ingaldi & Dorota Klimecka-Tatar, 2020. "People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
    4. Natalie D. Popovich & Deepak Rajagopal & Elif Tasar & Amol Phadke, 2021. "Economic, environmental and grid-resilience benefits of converting diesel trains to battery-electric," Nature Energy, Nature, vol. 6(11), pages 1017-1025, November.
    5. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Diogo Da Fonseca-Soares & Josicleda Domiciano Galvinicio & Sayonara Andrade Eliziário & Angel Fermin Ramos-Ridao, 2022. "A Bibliometric Analysis of the Trends and Characteristics of Railway Research," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    7. Janos Lucian Breuer & Juri Scholten & Jan Christian Koj & Felix Schorn & Marc Fiebrandt & Remzi Can Samsun & Rolf Albus & Klaus Görner & Detlef Stolten & Ralf Peters, 2022. "An Overview of Promising Alternative Fuels for Road, Rail, Air, and Inland Waterway Transport in Germany," Energies, MDPI, vol. 15(4), pages 1-65, February.
    8. Jing Teng & Longkai Li & Yajun Jiang & Ruifeng Shi, 2022. "A Review of Clean Energy Exploitation for Railway Transportation Systems and Its Enlightenment to China," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    9. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    10. Martinez, Andrew S. & Brouwer, Jacob & Samuelsen, G. Scott, 2015. "Comparative analysis of SOFC–GT freight locomotive fueled by natural gas and diesel with onboard reformation," Applied Energy, Elsevier, vol. 148(C), pages 421-438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ng, Max T.M. & Hernandez, Adrian & Durango-Cohen, Pablo L. & Mahmassani, Hani S., 2024. "Trading off energy storage and payload – An analytical model for freight train configuration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    2. Tye Boray & Mohamed Hegazi & Andreas Hoffrichter & Gord Lovegrove, 2024. "Technical Feasibility of a Hydrail Tram–Train in NA: Okanagan Valley Electric Regional Passenger Rail (OVER PR)," Sustainability, MDPI, vol. 16(7), pages 1-18, April.
    3. Tian, Ai-Qing & Wang, Xiao-Yang & Xu, Heying & Pan, Jeng-Shyang & Snášel, Václav & Lv, Hong-Xia, 2024. "Multi-objective optimization model for railway heavy-haul traffic: Addressing carbon emissions reduction and transport efficiency improvement," Energy, Elsevier, vol. 294(C).
    4. Jing Tang & Xiao Xiao & Mengqi Han & Rui Shan & Dungang Gu & Tingting Hu & Guanghui Li & Pinhua Rao & Nan Zhang & Jiaqi Lu, 2024. "China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers," Sustainability, MDPI, vol. 16(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moaaz Shehab & Kai Moshammer & Meik Franke & Edwin Zondervan, 2023. "Analysis of the Potential of Meeting the EU’s Sustainable Aviation Fuel Targets in 2030 and 2050," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    2. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    3. Szczygiel, Ireneusz & Bulinski, Zbigniew, 2018. "Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut's impact," Energy, Elsevier, vol. 165(PB), pages 999-1008.
    4. Johannes Schaffert, 2022. "Progress in Power-to-Gas Energy Systems," Energies, MDPI, vol. 16(1), pages 1-9, December.
    5. Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    6. Knott, Josef & Mueller, Melanie & Pander, Joachim & Geist, Juergen, 2023. "Ecological assessment of the world's first shaft hydropower plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    10. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Vadikkeettil, Yugesh & Subramaniam, Yugeswaran & Murugan, Ramaswamy & Ananthapadmanabhan, P.V. & Mostaghimi, Javad & Pershin, Larry & Batiot-Dupeyrat, Catherine & Kobayashi, Yasukazu, 2022. "Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    14. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    15. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    16. Invernizzi, Costante M. & Iora, Paolo, 2016. "The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview," Energy, Elsevier, vol. 105(C), pages 2-15.
    17. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    18. Han, Jeehoon & Byun, Jaewon & Kwon, Oseok & Lee, Jechan, 2022. "Climate variability and food waste treatment: Analysis for bioenergy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    20. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.