IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1426-d1335555.html
   My bibliography  Save this article

An Evaluation of the Luminous Performance of a School Environment Integrating Artificial Lighting and Daylight

Author

Listed:
  • Débora Thomé Miranda

    (Post Graduation Program in Civil Construction, Federal University of Sao Carlos, Sao Carlos 13565-905, Brazil)

  • Douglas Barreto

    (Civil Engineering Department, Federal University of Sao Carlos, Sao Carlos 13565-905, Brazil)

  • Inês Flores-Colen

    (Civil Engineering Research and Innovation for Sustainability, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal)

Abstract

The energy performance of buildings has been extensively studied at the Federal University of São Carlos, Brazil in order to achieve energy conservation and reduce environmental impacts. Artificial lighting is one of the systems that consume the most electricity in educational buildings; therefore, by adopting measures to improve energy performance, the luminous performance can also be improved. Artificial lighting allows for visual tasks to be accurately and safely carried out by means of lamps of varied temperatures, color rendering index, and luminous performance. Providing adequate lighting in school environments can influence both the health and well-being of school members, contributing positively to productivity. The present study aimed to evaluate the luminous performance of the existing artificial lighting system in a classroom by considering the minimum requirements recommended by the Brazilian standard NBR ISO/CIE 8995-1/2013. Through computer simulations using the DIALux evo program, it was possible to propose actions to improve the existing lighting system in order to offer better visual comfort to users and ensure electricity savings. The artificial lighting system consisted of LED luminaires integrated with daylight and the use of a manual control device, thus generating electricity savings of almost 65% when compared with the existing artificial lighting system in the room.

Suggested Citation

  • Débora Thomé Miranda & Douglas Barreto & Inês Flores-Colen, 2024. "An Evaluation of the Luminous Performance of a School Environment Integrating Artificial Lighting and Daylight," Sustainability, MDPI, vol. 16(4), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1426-:d:1335555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    2. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeh, Shih-Chuan, 2019. "High performance natural lighting system combined with SPSC," Renewable Energy, Elsevier, vol. 143(C), pages 226-232.
    2. Han, Zhong & Tian, Liting & Cheng, Lin, 2021. "A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    4. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    5. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
    6. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Nor, Khalil M.D. & Khoshnoudi, Masoumeh, 2016. "Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework," Energy, Elsevier, vol. 117(P1), pages 131-148.
    7. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
    8. Jianhua Ding & Xinyi Zou & Murong Lv, 2023. "Influence of Opposing Exterior Window Geometry on the Carbon Emissions of Indoor Lighting under the Combined Effect of Natural Lighting and Artificial Lighting in the City of Shenyang, China," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    9. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    10. Kai Zhang & Dong Yan, 2023. "Exploring Indoor and Outdoor Residential Factors of High-Density Communities for Promoting the Housing Development," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    11. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    12. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    14. Nabil Touili, 2021. "Hazards, Infrastructure Networks and Unspecific Resilience," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    15. Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
    16. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    17. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    18. Ferdinando Salata & Iacopo Golasi & Alessandro Poliziani & Antonio Futia & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Management Optimization of the Luminous Flux Regulation of a Lighting System in Road Tunnels. A First Approach to the Exertion of Predictive Control Systems," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    19. Lindita Bande & Adalberto Guerra Cabrera & Young Ki Kim & Afshin Afshari & Mario Favalli Ragusini & Melanie Gines Cooke, 2019. "A Building Retrofit and Sensitivity Analysis in an Automatically Calibrated Model Considering the Urban Heat Island Effect in Abu Dhabi, UAE," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    20. Roberto Sebastiano Faranda & Kim Fumagalli & Francesca Oliva, 2023. "Tips for Buildings Energy Saving: Results of Some Research," Energies, MDPI, vol. 16(3), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1426-:d:1335555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.