IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1402-d1335137.html
   My bibliography  Save this article

Multi-Scenario Land Use/Cover Change and Its Impact on Carbon Storage Based on the Coupled GMOP-PLUS-InVEST Model in the Hexi Corridor, China

Author

Listed:
  • Yang Zhang

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China)

  • Nazhalati Naerkezi

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China)

  • Yun Zhang

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China)

  • Bo Wang

    (Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China)

Abstract

Understanding the relationship between land use and carbon storage is vital for achieving sustainable development goals. However, our understanding of how carbon storage develops under land policy planning is still incomplete. In this study, a comprehensive framework that integrates Gray Multi-objective Optimization Programming (GMOP), the Patch-generating Land Use Simulation (PLUS) model, and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models is introduced to evaluate land use dynamics and ecosystem services. Two scenarios have been established to estimate Land Use and Land Cover Change (LUCC) patterns in the Hexi Corridor by 2035: the business-as-usual (BAU) scenario, developed based on historical trends, and the ecological conservation scenario (ECS), optimized with multiple policy objectives. The results show the following: (1) From 2000 to 2020, the predominant land use type in the Hexi Corridor was unutilized land, with LUCC mainly involving the transformation of unutilized land to grass land. (2) Carbon storage in the Hexi Corridor increased by approximately 9.05 × 10 6 t from 2000 to 2020 due to LUCC, characterized by higher levels in the south and lower levels in the north. (3) The areas of grass land and arable land are expected to continue increasing until 2035, while the extent of unutilized land is projected to decrease. The ECS is poised to create a balance between ecological protection and economic development. (4) By 2035, both the BAU scenario and ECS estimate an increase in the carbon storage of the Hexi Corridor, with the ECS expected to result in the most significant gains. These research findings provide valuable insights for administrators and researchers, guiding more rational land use planning and ecological restoration policies to achieve carbon peaking and neutrality.

Suggested Citation

  • Yang Zhang & Nazhalati Naerkezi & Yun Zhang & Bo Wang, 2024. "Multi-Scenario Land Use/Cover Change and Its Impact on Carbon Storage Based on the Coupled GMOP-PLUS-InVEST Model in the Hexi Corridor, China," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1402-:d:1335137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jiasheng & Guo, Xiaomin & Chuai, Xiaowei & Xie, Fangjian & Yang, Feng & Gao, Runyi & Ji, Xuepeng, 2021. "Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change," Land Use Policy, Elsevier, vol. 102(C).
    2. Megersa Kebede Leta & Tamene Adugna Demissie & Jens Tränckner, 2021. "Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    3. Huanhuan Yuan & Jianliang Zhang & Zhi Wang & Zhedong Qian & Xiaoyue Wang & Wanggu Xu & Haonan Zhang, 2023. "Multi-Temporal Change of LULC and Its Impact on Carbon Storage in Jiangsu Coastal, China," Land, MDPI, vol. 12(10), pages 1-15, October.
    4. Christian P. Giardina & Michael G. Ryan, 2000. "reply: Soil warming and organic carbon content," Nature, Nature, vol. 408(6814), pages 790-790, December.
    5. Yongjun Du & Xiaolong Li & Xinlin He & Xiaoqian Li & Guang Yang & Dongbo Li & Wenhe Xu & Xiang Qiao & Chen Li & Lu Sui, 2022. "Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China," IJERPH, MDPI, vol. 19(10), pages 1-31, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    2. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    3. Sonu Thaivalappil Sukumaran & Stephen J. Birkinshaw, 2024. "Investigating the Impact of Recent and Future Urbanization on Flooding in an Indian River Catchment," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    4. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    5. Alule, RJ & Nuwategeka, E & Oriangi, G, 2023. "Assessment Of Population Dynamics And Forest Cover Change In Yumbe District, Uganda," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 23(5), May.
    6. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    7. Yue Han & Xiaosan Ge, 2023. "Spatial–Temporal Characteristics and Influencing Factors on Carbon Emissions from Land Use in Suzhou, the World’s Largest Industrial City in China," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    8. Rui Shu & Zhanqi Wang & Na Guo & Ming Wei & Yebin Zou & Kun Hou, 2024. "Multi-Scenario Land Use Optimization Simulation and Ecosystem Service Value Estimation Based on Fine-Scale Land Survey Data," Land, MDPI, vol. 13(4), pages 1-23, April.
    9. Leizhou Zhu & Yaping Huang, 2022. "Multi-Scenario Simulation of Ecosystem Service Value in Wuhan Metropolitan Area Based on PLUS-GMOP Model," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    10. Belay Z. Abate & Tewodros T. Assefa & Tibebe B. Tigabu & Wubneh B. Abebe & Li He, 2023. "Hydrological Modeling of the Kobo-Golina River in the Data-Scarce Upper Danakil Basin, Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    11. Zhen Wang & Anya Zhong & Quanzhi Li, 2024. "Optimization of Land Use Structure Based on the Coupling of GMOP and PLUS Models: A Case Study of Lvliang City, China," Land, MDPI, vol. 13(8), pages 1-19, August.
    12. Ruiming Xiao & Yuxuan Qiao & Xiaobin Dong & Huize Ren & Xuechao Wang & Peng Zhang & Qiaoru Ye & Xiaomin Xiao, 2024. "Ecosystem Health Assessment of the Manas River Basin: Application of the CC-PSR Model Improved by Coupling Coordination Degree," Land, MDPI, vol. 13(8), pages 1-25, August.
    13. Shouyi Ding & Shumi Liu & Mingxin Chang & Hanwei Lin & Tianyu Lv & Yujing Zhang & Chen Zeng, 2023. "Spatial Optimization of Land Use Pattern toward Carbon Mitigation Targets—A Study in Guangzhou," Land, MDPI, vol. 12(10), pages 1-19, October.
    14. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    15. Yajun Ma & Ping Zhang & Kaixu Zhao & Yong Zhou & Sidong Zhao, 2022. "A Dynamic Performance and Differentiation Management Policy for Urban Construction Land Use Change in Gansu, China," Land, MDPI, vol. 11(6), pages 1-31, June.
    16. Wenyi Qiao & Weihua Guan & Xianjin Huang, 2021. "Assessing the Potential Impact of Land Use on Carbon Storage Driven by Economic Growth: A Case Study in Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    17. Yilun Zhao & Yan Rong & Yiyi Liu & Tianshu Lin & Liangji Kong & Qinqin Dai & Runzi Wang, 2023. "Investigating Urban Flooding and Nutrient Export under Different Urban Development Scenarios in the Rouge River Watershed in Michigan, USA," Land, MDPI, vol. 12(12), pages 1-25, December.
    18. Markos Mathewos & Semaria Moga Lencha & Misgena Tsegaye, 2022. "Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation," Land, MDPI, vol. 11(10), pages 1-28, September.
    19. Jie Chen & Ruijie Shi & Geng Sun & Ya Guo & Min Deng & Xiuyuan Zhang, 2023. "Simulation-Based Optimization of the Urban Thermal Environment through Local Climate Zones Reorganization in Changsha City, China with the FLUS Model," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    20. Yecheng He & Weicheng Wu & Xinyuan Xie & Xinxin Ke & Yifei Song & Cuimin Zhou & Wenjing Li & Yuan Li & Rong Jing & Peixia Song & Linqian Fu & Chunlian Mao & Meng Xie & Sicheng Li & Aohui Li & Xiaoping, 2023. "Land Use/Cover Change Prediction Based on a New Hybrid Logistic-Multicriteria Evaluation-Cellular Automata-Markov Model Taking Hefei, China as an Example," Land, MDPI, vol. 12(10), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1402-:d:1335137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.