IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1340-d1333744.html
   My bibliography  Save this article

Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review

Author

Listed:
  • Zhonghao Chen

    (Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
    Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool L69 3BX, UK
    These authors contributed equally to this work.)

  • Lin Chen

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
    These authors contributed equally to this work.
    First corresponding institute: School of Civil Engineering, Chongqing University.)

  • Xingyang Zhou

    (Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
    Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool L69 3BX, UK
    These authors contributed equally to this work.)

  • Lepeng Huang

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China)

  • Malindu Sandanayake

    (College of Sports, Health and Engineering, Victoria University, Melbourne, VIC 3011, Australia)

  • Pow-Seng Yap

    (Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China)

Abstract

In the high-energy, high-carbon landscape of the construction industry, a detailed and precise life cycle assessment (LCA) is essential. This review examines the role of building information modeling (BIM) software in streamlining the LCA process to enhance efficiency and accuracy. Despite its potential, challenges such as software interoperability and compatibility persist, with no unified standard for choosing BIM-integrated LCA software. Besides, the review explores the capabilities and limitations of various BIM software, LCA tools, and energy consumption tools, and presents characteristics of BIM-LCA integration cases. It critically discusses BIM-LCA integration methods and data exchange techniques, including bill of quantities import, Industry Foundation Classes (IFC) import, BIM viewer usage, direct LCA calculations with BIM plugins, and LCA plugin calculations. Finally, concluding with future perspectives, the study aims to guide the development of advanced LCA tools for better integration with BIM software, addressing a vital need in sustainable construction practices.

Suggested Citation

  • Zhonghao Chen & Lin Chen & Xingyang Zhou & Lepeng Huang & Malindu Sandanayake & Pow-Seng Yap, 2024. "Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review," Sustainability, MDPI, vol. 16(3), pages 1-30, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1340-:d:1333744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. José Pedro Carvalho & Fernanda Schmitd Villaschi & Luís Bragança, 2021. "Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    3. Meijing Liu & Changqi Liu & Hao Xie & Zhonghui Zhao & Chong Zhu & Yangang Lu & Changsheng Bu, 2023. "Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study," Energies, MDPI, vol. 16(20), pages 1-21, October.
    4. Najjar, Mohammad & Figueiredo, Karoline & Hammad, Ahmed W.A. & Haddad, Assed, 2019. "Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings," Applied Energy, Elsevier, vol. 250(C), pages 1366-1382.
    5. Bernardette Soust-Verdaguer & José Antonio Gutiérrez Moreno & Carmen Llatas, 2023. "Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Yang & Xiaogang Yue & Yongle Luo & Li Jin & Buyu Jia, 2024. "Building Information Modeling–Life Cycle Assessment: A Novel Technology for Rapid Calculation and Analysis System for Life Cycle Carbon Emissions of Bridges," Sustainability, MDPI, vol. 16(23), pages 1-23, December.
    2. Wang, Guimei & Mukhtar, Azfarizal & Moayedi, Hossein & Khalilpoor, Nima & Tt, Quynh, 2024. "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Rosa Trovato & Vittoria Ventura & Monia Lanzafame & Salvatore Giuffrida & Ludovica Nasca, 2024. "Seismic–Energy Retrofit as Information-Value: Axiological Programming for the Ecological Transition," Sustainability, MDPI, vol. 16(6), pages 1-37, March.
    2. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    3. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    4. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-40, December.
    5. Rongrong Yu & Ning Gu & Michael J. Ostwald, 2022. "Architects’ Perceptions about Sustainable Design Practice and the Support Provided for This by Digital Tools: A Study in Australia," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    6. So-Young Lee & Myoung-Won Oh, 2020. "Sustainable Design Alternatives and Energy Efficiency for Public Rental Housing in Korea," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    7. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    8. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
    9. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    10. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    11. Ankur Tayal & Saurabh Agrawal & Rajan Yadav, 2024. "Implementation of industry 4.0 in construction industry: a review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4163-4182, September.
    12. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    13. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    14. José Pedro Carvalho & Fernanda Schmitd Villaschi & Luís Bragança, 2021. "Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    15. Muhammed Yildirim & Hasan Polat, 2023. "Building Information Modeling Applications in Energy-Efficient Refurbishment of Existing Building Stock: A Case Study," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    16. Yali Chen & Dan Huang & Zhen Liu & Mohamed Osmani & Peter Demian, 2022. "Construction 4.0, Industry 4.0, and Building Information Modeling (BIM) for Sustainable Building Development within the Smart City," Sustainability, MDPI, vol. 14(16), pages 1-37, August.
    17. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    18. Ngoc-Son Truong & Duc Long Luong & Quang Trung Nguyen, 2023. "BIM to BEM Transition for Optimizing Envelope Design Selection to Enhance Building Energy Efficiency and Cost-Effectiveness," Energies, MDPI, vol. 16(10), pages 1-24, May.
    19. Jungsik Choi & Sejin Lee, 2023. "A Suggestion of the Alternatives Evaluation Method through IFC-Based Building Energy Performance Analysis," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    20. Lavinia Denisia Cuc & Dana Rad & Daniel Manațe & Silviu Gabriel Szentesi & Anca Dicu & Mioara Florina Pantea & Vanina Adoriana Trifan & Cosmin Silviu Raul Joldeș & Graziella Corina Bâtcă-Dumitru, 2023. "Representations of the Smart Green Concept and the Intention to Implement IoT in Romanian Real Estate Development," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1340-:d:1333744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.