IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924015630.html
   My bibliography  Save this article

A novel framework for developing a machine learning-based forecasting model using multi-stage sensitivity analysis to predict the energy consumption of PCM-integrated building

Author

Listed:
  • Nazir, Kashif
  • Memon, Shazim Ali
  • Saurbayeva, Assemgul

Abstract

Accurate machine learning (ML) predictions for the early stages of the building design are crucial to construct energy-efficient buildings utilizing limited resources. Several studies have employed ML methods for energy consumption (EC) prediction without considering the utmost crucial PCM-integrated building design parameters. In addition, reducing the dataset by considering only the most significant building design parameters before applying the ML-based method would be beneficial for reducing the computational power and memory usage of the system as well as utilizing less time in the modelling process. To this end, this research presents a novel framework to establish the most robust and reliable ML-based prediction model with less complexity, considering only the most influential PCM-integrated building design parameters. These parameters were identified for future scenarios of hot semi-arid (BSh) climate zones using multi-stage sensitivity analysis. Afterward, a reduced EC database based on the most significant building's early-design-stage parameters (EDSPs) was utilized to formulate several multi-expression programming (MEP) and support vector machines (SVM)-based forecasting models, considering the variations in their hyperparameter values. Formulated prediction models have shown less time utilization through the training and testing phases for the EC evaluations of selected PCM-integrated building compared to the physical-modelling process. Several statistical parameters were used to test and validate the performance of the formulated prediction models. The acquired model evaluation and validation results demonstrated that the MEP-based prediction model (MEP15) exhibited the highest level of reliability and accuracy, showing an R2 value of >95% for both the training and testing phases. The model's interpretability showed that, throughout the parametric analysis, the developed prediction model adhered to the system's physical boundary constraints. Also, the best-performing prediction model showed energy savings of up to 12% for building integrated with PCM having a melting temperature of 28 °C. Conclusively, this research demonstrated that the developed MEP-based prediction model could be employed to precisely forecast the EC for selected PCM-incorporated building in the whole BSh climate, considering important EDSPs while utilizing minimal resources.

Suggested Citation

  • Nazir, Kashif & Memon, Shazim Ali & Saurbayeva, Assemgul, 2024. "A novel framework for developing a machine learning-based forecasting model using multi-stage sensitivity analysis to predict the energy consumption of PCM-integrated building," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015630
    DOI: 10.1016/j.apenergy.2024.124180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Narkuniene, Asta & Poskas, Povilas & Kilda, Raimondas & Bartkus, Gytis, 2015. "Uncertainty and sensitivity analysis of radionuclide migration through the engineered barriers of deep geological repository: Case of RBMK-1500 SNF," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 8-16.
    4. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    5. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    6. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    7. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    8. Talita Mariane Cristino & Antonio Faria Neto & Antonio Fernando Branco Costa, 2018. "Energy efficiency in buildings: analysis of scientific literature and identification of data analysis techniques from a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1275-1326, March.
    9. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    10. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    11. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    13. Yıldız, Yusuf & Arsan, Zeynep Durmuş, 2011. "Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates," Energy, Elsevier, vol. 36(7), pages 4287-4296.
    14. Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
    15. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    16. Kenzhekhanov, Sultan & Memon, Shazim Ali & Adilkhanova, Indira, 2020. "Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate," Energy, Elsevier, vol. 192(C).
    17. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
    18. David Mhlanga, 2023. "Artificial Intelligence and Machine Learning for Energy Consumption and Production in Emerging Markets: A Review," Energies, MDPI, vol. 16(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    2. Naji, Sareh & Aye, Lu & Noguchi, Masa, 2021. "Sensitivity analysis on energy performance, thermal and visual discomfort of a prefabricated house in six climate zones in Australia," Applied Energy, Elsevier, vol. 298(C).
    3. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    4. D'Agostino, Delia & Congedo, Paolo Maria & Albanese, Paola Maria & Rubino, Alessandro & Baglivo, Cristina, 2024. "Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe," Energy, Elsevier, vol. 288(C).
    5. Nurlybekova, Gauhar & Memon, Shazim Ali & Adilkhanova, Indira, 2021. "Quantitative evaluation of the thermal and energy performance of the PCM integrated building in the subtropical climate zone for current and future climate scenario," Energy, Elsevier, vol. 219(C).
    6. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    7. Aliyeva, Xeniya & Memon, Shazim Ali & Nazir, Kashif & Kim, Jong, 2024. "Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios," Energy, Elsevier, vol. 310(C).
    8. Facundo Bre & Antonio Caggiano & Eduardus A. B. Koenders, 2022. "Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    9. Younhee Choi & Doosam Song & Sungmin Yoon & Junemo Koo, 2021. "Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads," Energies, MDPI, vol. 14(2), pages 1-23, January.
    10. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    11. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    12. Bre, Facundo & Lamberts, Roberto & Flores-Larsen, Silvana & Koenders, Eduardus A.B., 2023. "Multi-objective optimization of latent energy storage in buildings by using phase change materials with different melting temperatures," Applied Energy, Elsevier, vol. 336(C).
    13. Yingying Zhou & Christiane Margerita Herr, 2023. "A Review of Advanced Façade System Technologies to Support Net-Zero Carbon High-Rise Building Design in Subtropical China," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    14. Ahmad, Abrar & Memon, Shazim Ali, 2024. "A novel method to evaluate phase change materials' impact on buildings' energy, economic, and environmental performance via controlled natural ventilation," Applied Energy, Elsevier, vol. 353(PB).
    15. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    16. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    17. Mohseni, Ehsan & Tang, Waiching, 2021. "Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM," Renewable Energy, Elsevier, vol. 168(C), pages 865-877.
    18. Li, Weilin & Li, Rufei & Sui, Wenhai & Liu, Changhai & Yang, Liu, 2024. "Optimizing passive energy savings in rural self-built houses: Integrating phase change materials across China's climate zones," Energy, Elsevier, vol. 311(C).
    19. Chen, Xi & Yang, Hongxing & Sun, Ke, 2016. "A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong," Energy, Elsevier, vol. 113(C), pages 267-281.
    20. Rudai Shan & Lars Junghans, 2023. "Multi-Objective Optimization for High-Performance Building Facade Design: A Systematic Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.