IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7030-d1257030.html
   My bibliography  Save this article

Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study

Author

Listed:
  • Meijing Liu

    (Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Changqi Liu

    (Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Hao Xie

    (Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
    Zhenjiang Institute for Innovation and Development, Nanjing Normal University, Zhenjiang 212016, China)

  • Zhonghui Zhao

    (Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Chong Zhu

    (Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Yangang Lu

    (Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Changsheng Bu

    (Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China)

Abstract

The construction industry plays a crucial role in achieving global carbon neutrality. The purpose of this study is to explore the application of photovoltaic curtain walls in building models and analyze their impact on carbon emissions in order to find the best adaptation method that combines economy and carbon reduction. Through a carbon emissions calculation and economic analysis of replacing photovoltaic curtain walls on a large public building in Zhenjiang, China, the results showed that after replacing glass curtain walls with photovoltaic curtain walls, the carbon emissions during the construction operation stage decreased by 30.74%, but the carbon emissions during the production and transportation stage of building materials increased by 10.48%. The carbon emissions throughout the entire life cycle of the building have been reduced by 20.99%. This indicates that photovoltaic curtain wall technology has the potential to reduce building carbon emissions. Further promoting the development of production technology and sales routes for photovoltaic curtain walls and accelerating the improvement of carbon trading systems can further improve the carbon emission reduction effect of buildings. This study provides practical reference for public buildings in similar areas and guidance for reducing carbon emissions in the future.

Suggested Citation

  • Meijing Liu & Changqi Liu & Hao Xie & Zhonghui Zhao & Chong Zhu & Yangang Lu & Changsheng Bu, 2023. "Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study," Energies, MDPI, vol. 16(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7030-:d:1257030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenhan Fan & Jiaqi Zhang & Jianliang Zhou & Chao Li & Jinxin Hu & Feixiang Hu & Zhibo Nie, 2023. "LCA and Scenario Analysis of Building Carbon Emission Reduction: The Influencing Factors of the Carbon Emission of a Photovoltaic Curtain Wall," Energies, MDPI, vol. 16(11), pages 1-21, June.
    2. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    3. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    4. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianguo Di & Wenge Liu & Jiaqi Sun & Dianfeng Zhang, 2025. "Market Potential Evaluation of Photovoltaic Technologies in the Context of Future Architectural Trends," Sustainability, MDPI, vol. 17(3), pages 1-27, January.
    2. Yixuan Chen & Zhenyu Wang & Zhen Peng, 2024. "A Study on Carbon Emission Reduction in the Entire Process of Retrofitting High-Rise Office Buildings Based on the Extraction of Typical Models," Sustainability, MDPI, vol. 16(19), pages 1-20, September.
    3. Zhonghao Chen & Lin Chen & Xingyang Zhou & Lepeng Huang & Malindu Sandanayake & Pow-Seng Yap, 2024. "Recent Technological Advancements in BIM and LCA Integration for Sustainable Construction: A Review," Sustainability, MDPI, vol. 16(3), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    2. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
    3. Rosaliya Kurian & Kishor Sitaram Kulkarni & Prasanna Venkatesan Ramani & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM," Energies, MDPI, vol. 14(14), pages 1-16, July.
    4. Marie Nehasilová & Antonín Lupíšek & Petra Lupíšková Coufalová & Tomáš Kupsa & Jakub Veselka & Barbora Vlasatá & Julie Železná & Pavla Kunová & Martin Volf, 2022. "Rapid Environmental Assessment of Buildings: Linking Environmental and Cost Estimating Databases," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    5. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    6. Beata Piotrowska & Daniel Słyś, 2023. "Analysis of the Life Cycle Cost of a Heat Recovery System from Greywater Using a Vertical “Tube-in-Tube” Heat Exchanger: Case Study of Poland," Resources, MDPI, vol. 12(9), pages 1-17, August.
    7. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    8. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    9. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    10. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    11. Julian Canto-Perello & Maria P. Martinez-Garcia & Jorge Curiel-Esparza & Manuel Martin-Utrillas, 2015. "Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    12. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    14. Zejun Yu & Yao Wang & Bin Zhao & Zhixin Li & Qingli Hao, 2023. "Research on Carbon Emission Structure and Model in Low-Carbon Rural Areas: Bibliometric Analysis," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    15. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Claudia Calle Müller & Mohamed ElZomor, 2024. "Addressing Post-Disaster Challenges and Fostering Social Mobility through Origami Infrastructure and Construction Trade Education," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    17. Craig Langston & Edwin H. W. Chan & Esther H. K. Yung, 2018. "Hybrid Input-Output Analysis of Embodied Carbon and Construction Cost Differences between New-Build and Refurbished Projects," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    18. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    19. ZhiWu Zhou & Julián Alcalá & Víctor Yepes, 2020. "Environmental, Economic and Social Impact Assessment: Study of Bridges in China’s Five Major Economic Regions," IJERPH, MDPI, vol. 18(1), pages 1-33, December.
    20. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7030-:d:1257030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.