IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1298-d1332593.html
   My bibliography  Save this article

Historic Building Renovation with Solar System towards Zero-Energy Consumption: Feasibility Analysis and Case Optimization Practice in China

Author

Listed:
  • Wenyang Han

    (School of Architecture, Southwest Minzu University, Chengdu 610225, China)

  • Meng Han

    (School of Architecture, Southwest Minzu University, Chengdu 610225, China)

  • Menglong Zhang

    (School of Architecture, Southwest Minzu University, Chengdu 610225, China)

  • Ying Zhao

    (School of Architecture, Southwest Minzu University, Chengdu 610225, China)

  • Kai Xie

    (School of Architecture, Southwest Minzu University, Chengdu 610225, China)

  • Yin Zhang

    (School of Architecture, Southwest Minzu University, Chengdu 610225, China)

Abstract

This paper aims to study the required solar panel tilt angle, area, and investment payback period for achieving zero-energy heating in historically significant courtyard-style residential buildings. The retrofitting approach involves positioning solar panels on the main building of the structure using four supports, each located at the corners, elevated from the ground and not in direct contact with the building. This approach does not alter the external envelope structure of the building, thereby preserving the authenticity of the cultural heritage. Using BESI software, we simulated the heating energy demand of the sample building. We integrated a solar heating system within the building and analyzed the optimal solar panel layout area, installation angle, and payback period for achieving zero-energy heating. This allowed the building to meet the zero-energy heating requirements. Taking the Hu Family Courtyard heritage conservation building as an example, we proposed the optimal layout plan for solar energy retrofitting.

Suggested Citation

  • Wenyang Han & Meng Han & Menglong Zhang & Ying Zhao & Kai Xie & Yin Zhang, 2024. "Historic Building Renovation with Solar System towards Zero-Energy Consumption: Feasibility Analysis and Case Optimization Practice in China," Sustainability, MDPI, vol. 16(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1298-:d:1332593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    2. Sarawut Ninsawat & Mohammad Dalower Hossain, 2016. "Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV)," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    3. Juan Aranda & Ignacio Zabalza & Andrea Conserva & Gema Millán, 2017. "Analysis of Energy Efficiency Measures and Retrofitting Solutions for Social Housing Buildings in Spain as a Way to Mitigate Energy Poverty," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    4. Nan Yang & Weixiu Shi & Zihong Zhou, 2023. "Research on Application and International Policy of Renewable Energy in Buildings," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    5. Lingling Dai & Weifeng Qiao & Ting Feng & Yuanfang Li, 2022. "Research on Village Type Identification and Development Strategy under the Background of Rural Revitalization: A Case of Gaochun District in Nanjing, China," IJERPH, MDPI, vol. 19(11), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2020. "uhuMEBr: Energy Refurbishment of Existing Buildings in Subtropical Climates to Become Minimum Energy Buildings," Energies, MDPI, vol. 13(5), pages 1-35, March.
    3. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    4. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    5. Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
    6. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    7. Nima Monghasemi & Amir Vadiee & Konstantinos Kyprianidis & Elaheh Jalilzadehazhari, 2023. "Rank-Based Assessment of Grid-Connected Rooftop Solar Panel Deployments Considering Scenarios for a Postponed Installation," Energies, MDPI, vol. 16(21), pages 1-16, October.
    8. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    9. Pan, Xunzhang & Chen, Wenying & Zhou, Sheng & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Zheng, Xinzhu & Wang, Hailin, 2020. "Implications of near-term mitigation on China's long-term energy transitions for aligning with the Paris goals," Energy Economics, Elsevier, vol. 90(C).
    10. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    12. Carlos Beltran-Velamazan & Marta Monzón-Chavarrías & Belinda López-Mesa, 2021. "A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    13. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    14. Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    15. Hansjörg Drewello, 2022. "Towards a Theory of Local Energy Transition," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    16. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    17. Bragolusi, Paolo & D'Alpaos, Chiara, 2022. "The valuation of buildings energy retrofitting: A multiple-criteria approach to reconcile cost-benefit trade-offs and energy savings," Applied Energy, Elsevier, vol. 310(C).
    18. Zhaoxia Wang & Jing Zhao, 2018. "Optimization of Passive Envelop Energy Efficient Measures for Office Buildings in Different Climate Regions of China Based on Modified Sensitivity Analysis," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    19. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    20. Dong, Kangyin & Dou, Yue & Jiang, Qingzhe, 2022. "Income inequality, energy poverty, and energy efficiency: Who cause who and how?," Technological Forecasting and Social Change, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1298-:d:1332593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.