IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014166.html
   My bibliography  Save this article

Pushing forward the deployment of renewable energy: Do cross-national spillovers of policy instruments matter?

Author

Listed:
  • Wang, Xiaoqing
  • Jin, Wenxin
  • Qin, Meng
  • Su, Chi-Wei
  • Umar, Muhammad

Abstract

The deployment of renewables is a vital option for tackling the global challenge of climate change and achieving carbon neutrality. In international energy policy debates, existing literature has detected the outcome of various policy instruments and the driving factors of renewables development, whereas the spatial effects of different policy instruments on renewables deployment at a cross-national level have not been addressed. The novelty of this study lies in filling this gap through investigating the spatial interdependence effect of technology-push and demand-pull policies on the diffusion of renewables in European Union countries from multidimensional perspective of geography, institution, and culture. The results demonstrate that demand-pull policies give great impetus to the diffusion of domestic renewables, while the positive role of technology-push policies turns out to be comparatively less influential. From the transnational spillover perspective, it is confirmed that the domestic deployment of renewables is influenced to some extent by various policy instruments of geographically adjacent or institutionally and culturally similar regions. In addition, the spatial spillover effect of demand-pull policies is much stronger than that of technology-push policies. These findings from spatial perspective provide new insights for public policy guidance to achieve the sustainability of energy landscape.

Suggested Citation

  • Wang, Xiaoqing & Jin, Wenxin & Qin, Meng & Su, Chi-Wei & Umar, Muhammad, 2024. "Pushing forward the deployment of renewable energy: Do cross-national spillovers of policy instruments matter?," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014166
    DOI: 10.1016/j.energy.2024.131643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014166
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brown, Marilyn A., 2001. "Market failures and barriers as a basis for clean energy policies," Energy Policy, Elsevier, vol. 29(14), pages 1197-1207, November.
    2. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    3. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    4. Bersalli, Germán & Menanteau, Philippe & El-Methni, Jonathan, 2020. "Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    6. Pogrebnyakov, Nicolai & Maitland, Carleen F., 2011. "Institutional distance and the internationalization process: The case of mobile operators," Journal of International Management, Elsevier, vol. 17(1), pages 68-82, March.
    7. de Haan, Jakob & Sturm, Jan-Egbert, 2000. "On the relationship between economic freedom and economic growth," European Journal of Political Economy, Elsevier, vol. 16(2), pages 215-241, June.
    8. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    9. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    10. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    11. Fadly, Dalia & Fontes, Francisco, 2019. "Geographical proximity and renewable energy diffusion: An empirical approach," Energy Policy, Elsevier, vol. 129(C), pages 422-435.
    12. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    13. Hoppmann, Joern & Vermeer, Ben, 2020. "The double impact of institutions: Institutional spillovers and entrepreneurial activity in the solar photovoltaic industry," Journal of Business Venturing, Elsevier, vol. 35(3).
    14. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    15. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    16. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    17. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    18. Wang, Xiaoqing & Sun, Xing & Oprean-Stan, Camelia & Chang, Tsangyao, 2023. "What role does global value chain participation play in emissions embodied in trade? New evidence from value-added trade," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1205-1223.
    19. Cabrer-Borras, Bernardi & Serrano-Domingo, Guadalupe, 2007. "Innovation and R&D spillover effects in Spanish regions: A spatial approach," Research Policy, Elsevier, vol. 36(9), pages 1357-1371, November.
    20. Stevens, Kelly A. & Tang, Tian & Hittinger, Eric, 2023. "Innovation in complementary energy technologies from renewable energy policies," Renewable Energy, Elsevier, vol. 209(C), pages 431-441.
    21. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    22. Cantner, Uwe & Graf, Holger & Herrmann, Johannes & Kalthaus, Martin, 2016. "Inventor networks in renewable energies: The influence of the policy mix in Germany," Research Policy, Elsevier, vol. 45(6), pages 1165-1184.
    23. Reboredo, Juan C., 2015. "Renewable energy contribution to the energy supply: Is there convergence across countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 290-295.
    24. Wang, Xiaoqing & Qin, Chuan & Liu, Yufeng & Tanasescu, Cristina & Bao, Jiangnan, 2023. "Emerging enablers of green low-carbon development: Do digital economy and open innovation matter?," Energy Economics, Elsevier, vol. 127(PA).
    25. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    26. Baldwin, Elizabeth & Carley, Sanya & Nicholson-Crotty, Sean, 2019. "Why do countries emulate each others’ policies? A global study of renewable energy policy diffusion," World Development, Elsevier, vol. 120(C), pages 29-45.
    27. Ojala, Arto, 2015. "Geographic, cultural, and psychic distance to foreign markets in the context of small and new ventures," International Business Review, Elsevier, vol. 24(5), pages 825-835.
    28. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    29. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
    30. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    31. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    32. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    33. Dow, Douglas & Ferencikova, Sonia, 2010. "More than just national cultural distance: Testing new distance scales on FDI in Slovakia," International Business Review, Elsevier, vol. 19(1), pages 46-58, February.
    34. Wang, Xiao-Qing & Su, Chi-Wei & Lobonţ, Oana-Ramona & Li, Hao & Nicoleta-Claudia, Moldovan, 2022. "Is China's carbon trading market efficient? Evidence from emissions trading scheme pilots," Energy, Elsevier, vol. 245(C).
    35. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    36. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    37. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    38. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    39. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    40. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    41. Ang, James B. & Fredriksson, Per G., 2021. "Does an early start help or hurt? Statehood, institutions and modern climate change policies," Energy Economics, Elsevier, vol. 94(C).
    42. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kayani, Umar & Hasnaoui, Amir & Khan, Maaz & Zahoor, Nadia & Nawaz, Farrukh, 2024. "Analyzing fossil fuel commodities' return spillovers during the Russia and Ukraine crisis in the energy market," Energy Economics, Elsevier, vol. 135(C).
    2. Cao, Fangzhi & Su, Chi-Wei & Qin, Meng & Moldovan, Nicoleta-Claudia, 2024. "The investment of renewable energy: Is green bond a safe-haven to hedge U.S. monetary policy uncertainty?," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    2. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    4. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    5. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    6. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    7. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    8. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    9. Che, Xiao-Jing & Zhou, P. & Wang, M., 2022. "The policy effect on photovoltaic technology innovation with regional heterogeneity in China," Energy Economics, Elsevier, vol. 115(C).
    10. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    11. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    12. Cao, Fangzhi & Su, Chi-Wei & Sun, Dian & Qin, Meng & Umar, Muhammad, 2024. "U.S. monetary policy: The pushing hands of crude oil price?," Energy Economics, Elsevier, vol. 134(C).
    13. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    14. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    15. Zhao, Ge & Zhou, P. & Wen, Wen, 2021. "Feed-in tariffs, knowledge stocks and renewable energy technology innovation: The role of local government intervention," Energy Policy, Elsevier, vol. 156(C).
    16. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    17. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    18. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    19. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    20. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2024. "Global climate change mitigation technology diffusion: A network perspective," Energy Economics, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.