IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11172-d1548105.html
   My bibliography  Save this article

How Market Transformation Policies Can Support Agrivoltaic Adoption

Author

Listed:
  • Lisa Bosman

    (Technology Leadership & Innovation, Purdue Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA)

  • József Kádár

    (Haifa Center for German and European Studies, University of Haifa, Abba Khoushy Ave 199, Haifa 3498838, Israel
    The Arava Institute for Environmental Studies, Kibbutz Ketura 8884000, Israel)

  • Brandon Yonnie

    (Technology Leadership & Innovation, Purdue Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA)

  • Amy LeGrande

    (Technology Leadership & Innovation, Purdue Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA)

Abstract

Agrivoltaics, combining agricultural production with a photovoltaics system, leverage the dual benefits of panel shading and electricity to optimize traditional farming methods. Agrivoltaics offer many advantages, including agricultural and environmental benefits (e.g., increased crop productivity, water conservation, and enhanced biodiversity), energy benefits (e.g., increased energy production and efficiency), and social benefits (e.g., improved food and energy security, diversification of income, and rural development). Although agrivoltaic approaches have been around for about forty years, little is known about the long-term benefits, potential compatibility with current agricultural practices, market uncertainty and economic viability, and overall benefits. This research provides a review of the literature with a particular focus on individual income generation opportunities: (1) solar energy generation, (2) electricity sales, (3) agricultural production, (4) agricultural sales, and (5) agrivoltaics installations. Each focus area has an associated critical review of government-sponsored market transformation policies aimed to increase agrivoltaics adoption. The paper concludes with a call to action for establishing a collaborative agenda toward prioritizing agrivoltaics research and adoption. Future research is needed to find innovative designs and practices that maximize agricultural productivity within APV systems. Two promising areas for research and innovation include (1) real-time performance monitoring and (2) peer-to-peer networks. Implementing real-time performance monitoring systems can provide valuable data on energy production, microclimate conditions, and crop growth within APV setups. Additionally, peer-to-peer trading platforms can allow farmers to sell surplus energy generated by their APV systems directly to local consumers, bypassing traditional energy utilities. This decentralized model could provide farmers with an additional revenue stream, while promoting the use of renewable energy within local communities, further incentivizing the adaptation of APVs.

Suggested Citation

  • Lisa Bosman & József Kádár & Brandon Yonnie & Amy LeGrande, 2024. "How Market Transformation Policies Can Support Agrivoltaic Adoption," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11172-:d:1548105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    2. Meagan Reasoner & Aritra Ghosh, 2022. "Agrivoltaic Engineering and Layout Optimization Approaches in the Transition to Renewable Energy Technologies: A Review," Challenges, MDPI, vol. 13(2), pages 1-14, September.
    3. Pascaris, Alexis S., 2021. "Examining existing policy to inform a comprehensive legal framework for agrivoltaics in the U.S," Energy Policy, Elsevier, vol. 159(C).
    4. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    5. Majumdar, Debaleena & Pasqualetti, Martin J., 2019. "Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA," Renewable Energy, Elsevier, vol. 134(C), pages 1213-1231.
    6. Girolamo Di Francia & Paolo Cupo, 2023. "A Cost–Benefit Analysis for Utility-Scale Agrivoltaic Implementation in Italy," Energies, MDPI, vol. 16(7), pages 1-19, March.
    7. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    8. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    9. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
    10. Williams, Henry J. & Wang, Yipu & Yuan, Bo & Wang, Haomiao & Zhang, K. Max, 2025. "Rethinking agrivoltaic incentive programs: A science-based approach to encourage practical design solutions," Applied Energy, Elsevier, vol. 377(PA).
    11. Vidotto, Laís Cassanta & Schneider, Kathlen & Morato, Ramom Weinz & do Nascimento, Lucas Rafael & Rüther, Ricardo, 2024. "An evaluation of the potential of agrivoltaic systems in Brazil," Applied Energy, Elsevier, vol. 360(C).
    12. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    13. Aidana Chalgynbayeva & Zoltán Gabnai & Péter Lengyel & Albiona Pestisha & Attila Bai, 2023. "Worldwide Research Trends in Agrivoltaic Systems—A Bibliometric Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    14. Mouhib, Elmehdi & Fernández-Solas, Álvaro & Pérez-Higueras, Pedro J. & Fernández-Ocaña, Ana M. & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2024. "Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems," Applied Energy, Elsevier, vol. 359(C).
    15. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2022. "Comparison of net-metering with peer-to-peer models using the grid and electric vehicles for the electricity exchange," Applied Energy, Elsevier, vol. 310(C).
    16. Trommsdorff, Maximillian, 2016. "An economic analysis of agrophotovoltaics: Opportunities, risks and strategies towards a more efficient land use," The Constitutional Economics Network Working Papers 03-2016, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    17. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    18. Kacan, Erkan, 2015. "Renewable energy awareness in vocational and technical education," Renewable Energy, Elsevier, vol. 76(C), pages 126-134.
    19. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    20. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Carmine De Francesco & Luana Centorame & Giuseppe Toscano & Daniele Duca, 2025. "Opportunities, Technological Challenges and Monitoring Approaches in Agrivoltaic Systems for Sustainable Management," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    4. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    5. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    6. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    7. Altyeb Ali Abaker Omer & Fangxin Zhang & Ming Li & Xinyu Zhang & Feng Zhao & Wenhui Ma & Wen Liu, 2025. "Understanding Trends, Influences, Intellectual Structures, and Future Directions in Agrivoltaic Systems Research: A Bibliometric and Thematic Analysis," World, MDPI, vol. 6(1), pages 1-36, January.
    8. Rittick Maity & Kumarasamy Sudhakar & Amir Abdul Razak & Alagar Karthick & Dan Barbulescu, 2023. "Agrivoltaic: A Strategic Assessment Using SWOT and TOWS Matrix," Energies, MDPI, vol. 16(8), pages 1-18, April.
    9. Kyu-Won Hwang & Chul-Yong Lee, 2024. "Estimating the Deterministic and Stochastic Levelized Cost of the Energy of Fence-Type Agrivoltaics," Energies, MDPI, vol. 17(8), pages 1-19, April.
    10. Kedar Mehta & Meeth Jeetendra Shah & Wilfried Zörner, 2024. "Agri-PV (Agrivoltaics) in Developing Countries: Advancing Sustainable Farming to Address the Water–Energy–Food Nexus," Energies, MDPI, vol. 17(17), pages 1-23, September.
    11. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    12. Sirnik, I. & Sluijsmans, J. & Oudes, D. & Stremke, S., 2023. "Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
    14. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.
    15. Hyun Jo & Jong Tae Song & Hyeonjun Cho & Sangyeab Lee & Seungmin Choi & Ho-Jun Jung & Hyeong-No Lee & Jeong-Dong Lee, 2024. "Evaluation of Yield and Yield Components of Rice in Vertical Agro-Photovoltaic System in South Korea," Agriculture, MDPI, vol. 14(6), pages 1-13, June.
    16. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    17. Rakeshkumar Mahto & Deepak Sharma & Reshma John & Chandrasekhar Putcha, 2021. "Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers," Land, MDPI, vol. 10(11), pages 1-28, November.
    18. Al-Amin, & Shafiullah, G.M. & Ferdous, S.M. & Shoeb, Md & Reza, S.M. Shamim & Elavarasan, Rajvikram Madurai & Rahman, Mohammed Moseeur, 2024. "Agrivoltaics system for sustainable agriculture and green energy in Bangladesh," Applied Energy, Elsevier, vol. 371(C).
    19. Pascaris, Alexis S. & Gerlak, Andrea K. & Barron-Gafford, Greg A., 2023. "From niche-innovation to mainstream markets: Drivers and challenges of industry adoption of agrivoltaics in the U.S," Energy Policy, Elsevier, vol. 181(C).
    20. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11172-:d:1548105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.