IDEAS home Printed from https://ideas.repec.org/a/gam/jworld/v6y2025i1p2-d1558125.html
   My bibliography  Save this article

Understanding Trends, Influences, Intellectual Structures, and Future Directions in Agrivoltaic Systems Research: A Bibliometric and Thematic Analysis

Author

Listed:
  • Altyeb Ali Abaker Omer

    (School of Tea and Coffee, Puer University, Puer 665000, China
    School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
    These authors contributed equally to this work.)

  • Fangxin Zhang

    (Institute of Advanced Technology, University of Science and Technology of China, Hefei 230094, China
    These authors contributed equally to this work.)

  • Ming Li

    (School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China)

  • Xinyu Zhang

    (School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China)

  • Feng Zhao

    (School of Tea and Coffee, Puer University, Puer 665000, China)

  • Wenhui Ma

    (School of Engineering, Yunnan University, Kunming 650500, China
    School of Science and Technology, Puer University, Puer 665000, China)

  • Wen Liu

    (School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
    Institute of Advanced Technology, University of Science and Technology of China, Hefei 230094, China)

Abstract

Agrivoltaic (AV) systems have emerged as a transformative solution to global challenges in food–energy–water security, climate resilience, and sustainable land use. The purpose of this study is to analyze trends, influences, intellectual structures, and future research directions in AV systems research from 2011 to 2023. Using a bibliometric approach guided by the PRISMA framework, 477 documents from the Scopus database were analyzed through performance analysis and science mapping with Bibliometrix and VOSviewer. Key findings reveal exponential growth in research output, with the United States, France, and Germany leading in publications, citations, and international collaboration. Eight thematic clusters were identified, including dual productivity of land use, renewable energy integration, policy implications, and climate adaptation. Influential contributors, such as Joshua M. Pearce, and leading journals, including Applied Energy , shape the field. Emerging areas focus on advanced photovoltaic materials and integrated resource management strategies. This study provides a comprehensive roadmap for advancing AV systems research by identifying critical trends, proposing innovative solutions, and fostering interdisciplinary collaborations. Despite limitations, such as database dependency, this analysis highlights AV systems’ transformative potential to achieve global sustainability goals.

Suggested Citation

  • Altyeb Ali Abaker Omer & Fangxin Zhang & Ming Li & Xinyu Zhang & Feng Zhao & Wenhui Ma & Wen Liu, 2025. "Understanding Trends, Influences, Intellectual Structures, and Future Directions in Agrivoltaic Systems Research: A Bibliometric and Thematic Analysis," World, MDPI, vol. 6(1), pages 1-36, January.
  • Handle: RePEc:gam:jworld:v:6:y:2025:i:1:p:2-:d:1558125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-4060/6/1/2/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-4060/6/1/2/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
    2. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    3. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    4. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    5. Jian Chen & Lingjun Wang & Yuanyuan Li, 2022. "Research on Niche Evaluation of Photovoltaic Agriculture in China," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
    6. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    7. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    8. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    9. Ramos-Fuentes, Isaac A. & Elamri, Yassin & Cheviron, Bruno & Dejean, Cyril & Belaud, Gilles & Fumey, Damien, 2023. "Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems," Agricultural Water Management, Elsevier, vol. 280(C).
    10. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    11. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    12. Aidana Chalgynbayeva & Zoltán Gabnai & Péter Lengyel & Albiona Pestisha & Attila Bai, 2023. "Worldwide Research Trends in Agrivoltaic Systems—A Bibliometric Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    13. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    14. Gao, Yuan & Dong, Jianfei & Isabella, Olindo & Santbergen, Rudi & Tan, Hairen & Zeman, Miro & Zhang, Guoqi, 2019. "Modeling and analyses of energy performances of photovoltaic greenhouses with sun-tracking functionality," Applied Energy, Elsevier, vol. 233, pages 424-442.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    3. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.
    5. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Aidana Chalgynbayeva & Péter Balogh & László Szőllősi & Zoltán Gabnai & Ferenc Apáti & Marianna Sipos & Attila Bai, 2024. "The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study," Sustainability, MDPI, vol. 16(6), pages 1-34, March.
    7. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    8. Varo-Martínez, M. & Fernández-Ahumada, L.M. & Ramírez-Faz, J.C. & Ruiz-Jiménez, R. & López-Luque, R., 2024. "Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants," Applied Energy, Elsevier, vol. 361(C).
    9. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    10. Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
    11. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    12. Lisa Bosman & József Kádár & Brandon Yonnie & Amy LeGrande, 2024. "How Market Transformation Policies Can Support Agrivoltaic Adoption," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
    13. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Ji, Zhengsen & Li, Wanying & Niu, Dongxiao, 2024. "Optimal investment decision of agrivoltaic coupling energy storage project based on distributed linguistic trust and hybrid evaluation method," Applied Energy, Elsevier, vol. 353(PA).
    15. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    16. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    17. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    18. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    19. Al-Amin, & Shafiullah, G.M. & Ferdous, S.M. & Shoeb, Md & Reza, S.M. Shamim & Elavarasan, Rajvikram Madurai & Rahman, Mohammed Moseeur, 2024. "Agrivoltaics system for sustainable agriculture and green energy in Bangladesh," Applied Energy, Elsevier, vol. 371(C).
    20. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:6:y:2025:i:1:p:2-:d:1558125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.