IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3772-d354537.html
   My bibliography  Save this article

Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens

Author

Listed:
  • Margarita-Niki Assimakopoulos

    (Department of Physics, Section of Applied Physics, National & Kapodistrian University of Athens, 157 84 Athens, Greece)

  • Rosa Francesca De Masi

    (Department of Engineering - DING, University of Sannio, 82100 Benevento, Italy)

  • Filippo de Rossi

    (Department of Engineering - DING, University of Sannio, 82100 Benevento, Italy)

  • Dimitra Papadaki

    (Department of Physics, Section of Applied Physics, National & Kapodistrian University of Athens, 157 84 Athens, Greece)

  • Silvia Ruggiero

    (Department of Engineering - DING, University of Sannio, 82100 Benevento, Italy)

Abstract

In the 21st century, sustainable development is high on the international agenda, with the implementation of green walls contributing significantly to achieving environmental and social benefits, mainly in the frame of sustainable improvement of the building sector. The installation of a greening system can provide engineered solutions for stormwater management and climate change mitigation at both the urban and building level. This facilitates improving indoor comfort conditions and reducing energy needs. In order to improve the features of products and to facilitate the implementation of a proper technical standard, this paper proposes a critical bibliographic analysis of more recent scientific works. Moreover, by means of a numerical model of an existing single-family apartment, placed in the Mediterranean climate zone, a building envelope refurbishment with a living wall is carried out. A parametric analysis provides evidence for the application of different plants’ types and insulation materials. The results are analyzed considering the energy needs, the thermo-hygrometric comfort, and the outdoor surface temperature variation of the building envelope, emphasizing that a multi-criteria design approach is needed for green vertical systems. The paper provides data and an approach useful for designers and researchers in the evaluation and optimization of the performance of greening systems.

Suggested Citation

  • Margarita-Niki Assimakopoulos & Rosa Francesca De Masi & Filippo de Rossi & Dimitra Papadaki & Silvia Ruggiero, 2020. "Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3772-:d:354537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez, Gabriel & Rincón, Lídia & Vila, Anna & González, Josep M. & Cabeza, Luisa F., 2011. "Green vertical systems for buildings as passive systems for energy savings," Applied Energy, Elsevier, vol. 88(12), pages 4854-4859.
    2. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    3. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    4. Safikhani, Tabassom & Abdullah, Aminatuzuhariah Megat & Ossen, Dilshan Remaz & Baharvand, Mohammad, 2014. "A review of energy characteristic of vertical greenery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 450-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu Zhu & Feifei Lu, 2020. "Family Ownership and Corporate Environmental Responsibility: The Contingent Effect of Venture Capital and Institutional Environment," JRFM, MDPI, vol. 13(6), pages 1-18, June.
    2. Maria P. Kaltsidi & Ignacia Bayer & Christina Mitsi & Danilo Aros, 2023. "Potential Use of Chilean Native Species in Vertical Greening Systems," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    3. Silvia Ruggiero & Margarita-Niki Assimakopoulos & Rosa Francesca De Masi & Filippo de Rossi & Anastasia Fotopoulou & Dimitra Papadaki & Giuseppe Peter Vanoli & Annarita Ferrante, 2021. "Multi-Disciplinary Analysis of Light Shelves Application within a Student Dormitory Refurbishment," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    4. Yun Gao & Ensiyeh Farrokhirad & Adrian Pitts, 2023. "The Impact of Orientation on Living Wall Façade Temperature: Manchester Case Study," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    5. Tõnis Teppand & Olesja Escuer & Ergo Rikmann & Jüri Liiv & Merrit Shanskiy, 2022. "Timber Structures and Prefabricated Concrete Composite Blocks as a Novel Development in Vertical Gardening," Sustainability, MDPI, vol. 14(21), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    3. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    4. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Luis Pérez-Urrestarazu & Rafael Fernández-Cañero & Antonio Franco-Salas & Gregorio Egea, 2015. "Vertical Greening Systems and Sustainable Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(4), pages 65-85, October.
    6. Faezeh Bagheri Moghaddam & Josep Maria Fort Mir & Alia Besné Yanguas & Isidro Navarro Delgado & Ernest Redondo Dominguez, 2020. "Building Orientation in Green Facade Performance and Its Positive Effects on Urban Landscape Case Study: An Urban Block in Barcelona," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    7. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    8. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    9. Coma, Julià & Chàfer, Marta & Pérez, Gabriel & Cabeza, Luisa F., 2020. "How internal heat loads of buildings affect the effectiveness of vertical greenery systems? An experimental study," Renewable Energy, Elsevier, vol. 151(C), pages 919-930.
    10. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    11. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    12. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    13. Yara Nasr & Henri El Zakhem & Ameur El Amine Hamami & Makram El Bachawati & Rafik Belarbi, 2024. "Comprehensive Assessment of the Impact of Green Roofs and Walls on Building Energy Performance: A Scientific Review," Energies, MDPI, vol. 17(20), pages 1-52, October.
    14. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Mina Radić & Marta Brković Dodig & Thomas Auer, 2019. "Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    16. Yun Gao & Ensiyeh Farrokhirad & Adrian Pitts, 2023. "The Impact of Orientation on Living Wall Façade Temperature: Manchester Case Study," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    17. Sara Di Lonardo & Susanna Mariani & Germina Giagnacovo & Antonella Marone & Salvatore Raimondi, 2019. "Green infrastructures for the energetic and environmental sustainability of cities," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 79-98.
    18. Wen Wang & Xiaolin Zhou & Suqing Wu & Min Zhao & Zhan Jin & Ke Bei & Xiangyong Zheng & Chunzhen Fan, 2024. "Vertical Green Wall Systems for Rainwater and Sewage Treatment," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    19. Cuce, Erdem, 2017. "Thermal regulation impact of green walls: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 194(C), pages 247-254.
    20. Ileana Blanco & Fabiana Convertino, 2023. "Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach," Sustainability, MDPI, vol. 15(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3772-:d:354537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.