IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v187y2017icp424-437.html
   My bibliography  Save this article

Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect

Author

Listed:
  • Pérez, Gabriel
  • Coma, Julià
  • Sol, Salvador
  • Cabeza, Luisa F.

Abstract

To “green” building envelopes is currently one of the most promising ways to provide energy savings in buildings and to contribute to the urban heat island effect mitigation. The shadow effect supplied by plants is the most significant parameter for this purpose. One way to characterize the potential shadow effect of greenery is to calculate the facade foliar density by means of the leaf area index (LAI). As LAI is commonly used in horizontal crops, their use in vertical greenery systems (VGS) has generated dispersion and uncertainty in previous studies both in terms of methodologies and results obtained. In addition, a lack of data relating to the influence of the facade orientation in the final contribution of vertical greenery to the energy savings has been observed in previous studies.

Suggested Citation

  • Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
  • Handle: RePEc:eee:appene:v:187:y:2017:i:c:p:424-437
    DOI: 10.1016/j.apenergy.2016.11.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916316397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez, Gabriel & Rincón, Lídia & Vila, Anna & González, Josep M. & Cabeza, Luisa F., 2011. "Green vertical systems for buildings as passive systems for energy savings," Applied Energy, Elsevier, vol. 88(12), pages 4854-4859.
    2. Pérez, Gabriel & Coma, Julià & Martorell, Ingrid & Cabeza, Luisa F., 2014. "Vertical Greenery Systems (VGS) for energy saving in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 139-165.
    3. Jim, C.Y., 2015. "Thermal performance of climber greenwalls: Effects of solar irradiance and orientation," Applied Energy, Elsevier, vol. 154(C), pages 631-643.
    4. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    3. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Coma, Julià & Chàfer, Marta & Pérez, Gabriel & Cabeza, Luisa F., 2020. "How internal heat loads of buildings affect the effectiveness of vertical greenery systems? An experimental study," Renewable Energy, Elsevier, vol. 151(C), pages 919-930.
    5. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    6. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    7. Luis Pérez-Urrestarazu & Rafael Fernández-Cañero & Antonio Franco-Salas & Gregorio Egea, 2015. "Vertical Greening Systems and Sustainable Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(4), pages 65-85, October.
    8. Mina Radić & Marta Brković Dodig & Thomas Auer, 2019. "Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    9. Hankun Lin & Yiqiang Xiao & Florian Musso & Yao Lu, 2019. "Green Façade Effects on Thermal Environment in Transitional Space: Field Measurement Studies and Computational Fluid Dynamics Simulations," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    10. Cuce, Erdem, 2017. "Thermal regulation impact of green walls: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 194(C), pages 247-254.
    11. Ileana Blanco & Fabiana Convertino, 2023. "Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    12. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    13. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    14. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    15. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Margarita-Niki Assimakopoulos & Rosa Francesca De Masi & Filippo de Rossi & Dimitra Papadaki & Silvia Ruggiero, 2020. "Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    17. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    18. Oquendo-Di Cosola, V. & Olivieri, F. & Ruiz-García, L., 2022. "A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Yun Gao & Ensiyeh Farrokhirad & Adrian Pitts, 2023. "The Impact of Orientation on Living Wall Façade Temperature: Manchester Case Study," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    20. Faezeh Bagheri Moghaddam & Josep Maria Fort Mir & Alia Besné Yanguas & Isidro Navarro Delgado & Ernest Redondo Dominguez, 2020. "Building Orientation in Green Facade Performance and Its Positive Effects on Urban Landscape Case Study: An Urban Block in Barcelona," Sustainability, MDPI, vol. 12(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:187:y:2017:i:c:p:424-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.