IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5957-d1530848.html
   My bibliography  Save this article

Analysis of the Impact of Photovoltaic Generation on the Level of Energy Losses in a Low-Voltage Network

Author

Listed:
  • Anna Gawlak

    (Department of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

  • Mirosław Kornatka

    (Department of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

Abstract

Due to the dynamic development of energy generation in photovoltaic installations, a reliable assessment of their impact on the level of energy losses in distribution networks is needed. For energy companies managing network resources, this issue has a very tangible practical aspect. Therefore, ongoing analyses of the level of electricity losses based on actual measurement data of prosumers are needed. In the paper, the influence of energy introduced by prosumer photovoltaic installations on energy losses in a low-voltage radial line is investigated. The issue is examined from three perspectives: 1. Focused on energy supplied into the low-voltage grid from photovoltaic installations; 2. the installations’ locations; and 3. the product of energy and distance from the power source. Comparative assessments are made of the examined aspects for 87 possible locations of prosumer installations in the tested low-voltage network. An analysis of energy losses is carried out both for the entire analysed network and separately for the line and the transformer. The changes in energy losses are influenced by both the power and the location of the photovoltaic installations. Based on the research findings, functions defining relative changes in energy losses in the low-voltage network are determined.

Suggested Citation

  • Anna Gawlak & Mirosław Kornatka, 2024. "Analysis of the Impact of Photovoltaic Generation on the Level of Energy Losses in a Low-Voltage Network," Energies, MDPI, vol. 17(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5957-:d:1530848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samson Oladayo Ayanlade & Funso Kehinde Ariyo & Abdulrasaq Jimoh & Kayode Timothy Akindeji & Adeleye Oluwaseye Adetunji & Emmanuel Idowu Ogunwole & Dolapo Eniola Owolabi, 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    2. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    2. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    3. Salman Khodayifar & Mohammad A. Raayatpanah & Abbas Rabiee & Hamed Rahimian & Panos M. Pardalos, 2018. "Optimal Long-Term Distributed Generation Planning and Reconfiguration of Distribution Systems: An Accelerating Benders’ Decomposition Approach," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 283-310, October.
    4. S. Angalaeswari & P. Sanjeevikumar & K. Jamuna & Zbigniew Leonowicz, 2020. "Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    5. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    6. Mohamed Tolba & Hegazy Rezk & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2018. "A Novel Robust Methodology Based Salp Swarm Algorithm for Allocation and Capacity of Renewable Distributed Generators on Distribution Grids," Energies, MDPI, vol. 11(10), pages 1-34, September.
    7. Syed Ali Abbas Kazmi & Usama Ameer Khan & Hafiz Waleed Ahmad & Sajid Ali & Dong Ryeol Shin, 2020. "A Techno-Economic Centric Integrated Decision-Making Planning Approach for Optimal Assets Placement in Meshed Distribution Network Across the Load Growth," Energies, MDPI, vol. 13(6), pages 1-71, March.
    8. Qazi, Usama & Jahanzaib, Mirza & Ahmad, Wasim & Hussain, Salman, 2017. "An institutional framework for the development of sustainable and competitive power market in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 83-95.
    9. Mohsin Shahzad & Waseem Akram & Muhammad Arif & Uzair Khan & Barkat Ullah, 2021. "Optimal Siting and Sizing of Distributed Generators by Strawberry Plant Propagation Algorithm," Energies, MDPI, vol. 14(6), pages 1-13, March.
    10. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    11. Teketay Mulu Beza & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "A Hybrid Optimization Approach for Power Loss Reduction and DG Penetration Level Increment in Electrical Distribution Network," Energies, MDPI, vol. 13(22), pages 1-17, November.
    12. Tianhao Song & Xiaoqing Han & Baifu Zhang, 2021. "Multi-Time-Scale Optimal Scheduling in Active Distribution Network with Voltage Stability Constraints," Energies, MDPI, vol. 14(21), pages 1-20, November.
    13. Mohd Effendi Amran & Mohd Nabil Muhtazaruddin & Firdaus Muhammad-Sukki & Nurul Aini Bani & Tauran Zaidi Ahmad Zaidi & Khairul Azmy Kamaluddin & Jorge Alfredo Ardila-Rey, 2019. "Photovoltaic Expansion-Limit through a Net Energy Metering Scheme for Selected Malaysian Public Hospitals," Sustainability, MDPI, vol. 11(18), pages 1-30, September.
    14. Amal A. Mohamed & Salah Kamel & Ali Selim & Tahir Khurshaid & Sang-Bong Rhee, 2021. "Developing a Hybrid Approach Based on Analytical and Metaheuristic Optimization Algorithms for the Optimization of Renewable DG Allocation Considering Various Types of Loads," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    15. Sadeghian, Hamidreza & Wang, Zhifang, 2020. "A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks," Renewable Energy, Elsevier, vol. 147(P1), pages 2179-2194.
    16. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    17. Mohammed Goda Eisa & Mohammed A. Farahat & Wael Abdelfattah & Mohammed Elsayed Lotfy, 2024. "Multi-Objective Optimal Integration of Distributed Generators into Distribution Networks Incorporated with Plug-In Electric Vehicles Using Walrus Optimization Algorithm," Sustainability, MDPI, vol. 16(22), pages 1-37, November.
    18. José A. G. Cararo & João Caetano Neto & Wagner A. Vilela Júnior & Márcio R. C. Reis & Gabriel A. Wainer & Paulo V. dos Santos & Wesley P. Calixto, 2021. "Spatial Model of Optimization Applied in the Distributed Generation Photovoltaic to Adjust Voltage Levels," Energies, MDPI, vol. 14(22), pages 1-37, November.
    19. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Dong Ryeol Shin, 2017. "Multi-Objective Planning Techniques in Distribution Networks: A Composite Review," Energies, MDPI, vol. 10(2), pages 1-44, February.
    20. Sirjani, Reza & Rezaee Jordehi, Ahmad, 2017. "Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 688-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5957-:d:1530848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.