IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1180-d743041.html
   My bibliography  Save this article

Investigating the Impact of Electric Vehicles Demand on the Distribution Network

Author

Listed:
  • Thamer Alquthami

    (Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdullah Alsubaie

    (King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia)

  • Mohannad Alkhraijah

    (King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia)

  • Khalid Alqahtani

    (King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia)

  • Saad Alshahrani

    (King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia)

  • Murad Anwar

    (Saudi Electricity Company, Riyadh 11416, Saudi Arabia)

Abstract

Deployment of Electric Vehicles (EV) is increasing in recent years due to economic and environmental advantages compared with fossil fuel-based vehicles. As the market of EVs grows, new challenges to the electric grid are emerging to accommodate the EVs demand, especially in the distribution networks. In this paper, we investigate the impact of EVs deployment on the electricity demand and distributed network. We propose a model to generate EV demand profiles that consider the EV users’ driving pattern such as daily energy consumption and charging schedule, in addition to the EV’s charging characteristics. The EV demand model uses data we obtained from a survey to evaluate the model’s parameters. We use the EV demand model to simulate and evaluate the impact of EVs demand on the distribution network. We present a case study with an actual model for a distribution network to evaluate the impact of EVs on the distribution network in Saudi Arabia. We analyze the simulation results and show how EVs impact the demand and the distribution network performance.

Suggested Citation

  • Thamer Alquthami & Abdullah Alsubaie & Mohannad Alkhraijah & Khalid Alqahtani & Saad Alshahrani & Murad Anwar, 2022. "Investigating the Impact of Electric Vehicles Demand on the Distribution Network," Energies, MDPI, vol. 15(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1180-:d:743041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    2. Fathabadi, Hassan, 2017. "Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology," Energy, Elsevier, vol. 132(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    2. Seppo Borenius & Petri Tuomainen & Jyri Tompuri & Jesse Mansikkamäki & Matti Lehtonen & Heikki Hämmäinen & Raimo Kantola, 2022. "Scenarios on the Impact of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 15(13), pages 1-30, June.
    3. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    4. Mohammed Goda Eisa & Mohammed A. Farahat & Wael Abdelfattah & Mohammed Elsayed Lotfy, 2024. "Multi-Objective Optimal Integration of Distributed Generators into Distribution Networks Incorporated with Plug-In Electric Vehicles Using Walrus Optimization Algorithm," Sustainability, MDPI, vol. 16(22), pages 1-37, November.
    5. Apostolos Vavouris & Benjamin Garside & Lina Stankovic & Vladimir Stankovic, 2022. "Low-Frequency Non-Intrusive Load Monitoring of Electric Vehicles in Houses with Solar Generation: Generalisability and Transferability," Energies, MDPI, vol. 15(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    2. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    3. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    4. Yi, Tao & Cheng, Xiaobin & Chen, Yaxuan & Liu, Jinpeng, 2020. "Joint optimization of charging station and energy storage economic capacity based on the effect of alternative energy storage of electric vehicle," Energy, Elsevier, vol. 208(C).
    5. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    6. Good, Clara & Shepero, Mahmoud & Munkhammar, Joakim & Boström, Tobias, 2019. "Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities," Energy, Elsevier, vol. 168(C), pages 111-125.
    7. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    8. Lin, Haiyang & Bian, Caiyun & Wang, Yu & Li, Hailong & Sun, Qie & Wallin, Fredrik, 2022. "Optimal planning of intra-city public charging stations," Energy, Elsevier, vol. 238(PC).
    9. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    10. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Nopphamat Promasa & Ekawit Songkoh & Siamrat Phonkaphon & Karun Sirichunchuen & Chaliew Ketkaew & Pramuk Unahalekhaka, 2025. "Optimization of Sizing of Battery Energy Storage System for Residential Households by Load Forecasting with Artificial Intelligence (AI): Case of EV Charging Installation," Energies, MDPI, vol. 18(5), pages 1-14, March.
    12. Pirouzi, Sasan & Aghaei, Jamshid & Niknam, Taher & Shafie-khah, Miadreza & Vahidinasab, Vahid & Catalão, João P.S., 2017. "Two alternative robust optimization models for flexible power management of electric vehicles in distribution networks," Energy, Elsevier, vol. 141(C), pages 635-651.
    13. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    14. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    15. Giasemidis, Georgios & Haben, Stephen & Lee, Tamsin & Singleton, Colin & Grindrod, Peter, 2017. "A genetic algorithm approach for modelling low voltage network demands," Applied Energy, Elsevier, vol. 203(C), pages 463-473.
    16. Fathabadi, Hassan, 2019. "Two novel methods for converting the waste heat of PV modules caused by temperature rise into electric power," Renewable Energy, Elsevier, vol. 142(C), pages 543-551.
    17. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    18. Qiongjie Dai & Jicheng Liu & Qiushuang Wei, 2019. "Optimal Photovoltaic/Battery Energy Storage/Electric Vehicle Charging Station Design Based on Multi-Agent Particle Swarm Optimization Algorithm," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    19. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    20. Calearo, Lisa & Marinelli, Mattia & Ziras, Charalampos, 2021. "A review of data sources for electric vehicle integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1180-:d:743041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.