IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3583-d1439705.html
   My bibliography  Save this article

Two-Stage Optimal Scheduling for Urban Snow-Shaped Distribution Network Based on Coordination of Source-Network-Load-Storage

Author

Listed:
  • Zhe Wang

    (State Grid Tianjin Electric Power Company, Tianjin 300010, China)

  • Jiali Duan

    (State Grid Tianjin Electric Power Company, Tianjin 300010, China)

  • Fengzhang Luo

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Xuan Wu

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

With the widespread integration of distributed resources, optimizing the operation of urban distribution networks faces challenges including uneven source-load-storage distribution, fluctuating feeder power flows, load imbalances, and network congestion. The urban snow-shaped distribution network (SDN), characterized by numerous intra-station and inter-station tie switches, serves as a robust framework to intelligently address these issues. This study focuses on enhancing the safe and efficient operation of SDNs through a two-phase optimal scheduling model that coordinates source-network-load-storage . In the day-ahead scheduling phase, an optimization model is formulated to minimize operational costs and mitigate load imbalances. This model integrates network reconfiguration, energy storage systems (ESSs), and flexible load (FL). During intra-day scheduling, a rolling optimization model based on model predictive control adjusts operations using the day-ahead plan to minimize the costs and penalties associated with power adjustments. It provides precise control over ESS and FL outputs, promptly correcting deviations caused by prediction errors. Finally, the proposed model is verified by an actual example of a snow-shaped distribution network in Tianjin. The results indicate significant improvements in leveraging coordinated interactions among source-network-load-storage , effectively reducing spatial-temporal load imbalances within feeder clusters and minimizing the impact of prediction inaccuracies.

Suggested Citation

  • Zhe Wang & Jiali Duan & Fengzhang Luo & Xuan Wu, 2024. "Two-Stage Optimal Scheduling for Urban Snow-Shaped Distribution Network Based on Coordination of Source-Network-Load-Storage," Energies, MDPI, vol. 17(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3583-:d:1439705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuxin Liu & Jing Xu & Chaojian Xing & Yang Liu & Ersheng Tian & Jia Cui & Junzhu Wei, 2023. "Study on Dynamic Pricing Strategy for Industrial Power Users Considering Demand Response Differences in Master–Slave Game," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    2. Mateusz Malarczyk & Grzegorz Kaczmarczyk & Jaroslaw Szrek & Marcin Kaminski, 2023. "Internet of Robotic Things (IoRT) and Metaheuristic Optimization Techniques Applied for Wheel-Legged Robot," Future Internet, MDPI, vol. 15(9), pages 1-19, September.
    3. Mohammed Qasim Taha & Sefer Kurnaz, 2023. "Droop Control Optimization for Improved Power Sharing in AC Islanded Microgrids Based on Centripetal Force Gravity Search Algorithm," Energies, MDPI, vol. 16(24), pages 1-20, December.
    4. Muhammad Usman Riaz & Suheel Abdullah Malik & Amil Daraz & Hasan Alrajhi & Ahmed N. M. Alahmadi & Abdul Rahman Afzal, 2024. "Advanced Energy Management in a Sustainable Integrated Hybrid Power Network Using a Computational Intelligence Control Strategy," Energies, MDPI, vol. 17(20), pages 1-53, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3583-:d:1439705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.