Short-Term Power Load Forecasting Based on Secondary Cleaning and CNN-BILSTM-Attention
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fachrizal Aksan & Vishnu Suresh & Przemysław Janik & Tomasz Sikorski, 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models," Energies, MDPI, vol. 16(14), pages 1-24, July.
- Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
- Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
- Troy Malatesta & Qilin Li & Jessica K. Breadsell & Christine Eon, 2023. "Distinguishing Household Groupings within a Precinct Based on Energy Usage Patterns Using Machine Learning Analysis," Energies, MDPI, vol. 16(10), pages 1-25, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhongping Liu & Baisong Su & Qingjing Ji & Yan Hu, 2024. "Local Iterative Calculation Method and Fault Analysis of Short-Circuit Current in High-Voltage Grid with Large-Scale New Energy Equipment Integration," Sustainability, MDPI, vol. 16(24), pages 1-17, December.
- Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
- Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
- Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
- Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
- Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
- Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
- Siting Li & Huafeng Cai, 2024. "Short-Term Power Load Forecasting Using a VMD-Crossformer Model," Energies, MDPI, vol. 17(11), pages 1-18, June.
- Wang, Deyun & Yue, Chenqiang & ElAmraoui, Adnen, 2021. "Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
- Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
- Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
- Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
- Jieyi Kang & David Reiner, 2021.
"Machine Learning on residential electricity consumption: Which households are more responsive to weather?,"
Working Papers
EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kang, J. & Reiner, D., 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Cambridge Working Papers in Economics 2142, Faculty of Economics, University of Cambridge.
- Akash Mahajan & Srijita Das & Wencong Su & Van-Hai Bui, 2024. "Bayesian-Neural-Network-Based Approach for Probabilistic Prediction of Building-Energy Demands," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
- Jian Yang & Xin Zhao & Haikun Wei & Kanjian Zhang, 2019. "Sample Selection Based on Active Learning for Short-Term Wind Speed Prediction," Energies, MDPI, vol. 12(3), pages 1-12, January.
- Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
- Liang, Zheming & Bian, Desong & Zhang, Xiaohu & Shi, Di & Diao, Ruisheng & Wang, Zhiwei, 2019. "Optimal energy management for commercial buildings considering comprehensive comfort levels in a retail electricity market," Applied Energy, Elsevier, vol. 236(C), pages 916-926.
More about this item
Keywords
power load; data clean; variational mode decomposition; convolutional neural network; bidirectional long short-term memory network; attention mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4142-:d:1459987. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.