IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2824-d176917.html
   My bibliography  Save this article

Assessing the Macro-Economic Benefit of Installing a Farm of Oscillating Water Columns in Scotland and Portugal

Author

Listed:
  • Samuel Draycott

    (School of Engineering, Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3DW, UK)

  • Iwona Szadkowska

    (School of Engineering, Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3DW, UK)

  • Marta Silva

    (WavEC Offshore Renewables, 1400-119 Lisboa, Portugal)

  • David M Ingram

    (School of Engineering, Institute for Energy Systems, The University of Edinburgh, Edinburgh EH9 3DW, UK)

Abstract

The nascent wave energy sector has the potential to contribute significantly to global renewables targets, yet at present there are no proven commercially viable technologies. Macro-economic assessment is seldom used to assess wave energy projects, yet can provide insightful information on the wider economic benefits and can be used in conjunction with techno-economic analysis to inform policy makers, investors and funding bodies. Herein, we present a coupled techno–macro-economic model, which is used to assess the macro-economic benefit of installing a 5.25 MW farm of oscillating water column wave energy devices at two locations: Orkney in Scotland and Leixoes in Portugal. Through an input-output analysis, the wide-reaching macro-economic benefit of the prospective projects is highlighted; evidenced by the finding that all 29 industry sectors considered are either directly or indirectly stimulated by the project for both locations. Peak annual employment is expected to be 420 and 190 jobs in Portugal and Scotland respectively during the combined installation and manufacturing stage, with an associated peak annual GVA of over €16.6 m and €12.8 m. The discrepancies between the two locations is concluded to largely be a result of the site-specific attributes of the farm locations: specifically, increased water depth and distance to shore for the Portuguese site, resulting in higher costs associated with mooring and electrical cables and vessels. The insights gained through the presented results demonstrate the merit of macro-economic analysis for understanding the wider economic benefit of wave energy projects, while providing an understanding over key physical factors which will dominate estimated effects.

Suggested Citation

  • Samuel Draycott & Iwona Szadkowska & Marta Silva & David M Ingram, 2018. "Assessing the Macro-Economic Benefit of Installing a Farm of Oscillating Water Columns in Scotland and Portugal," Energies, MDPI, vol. 11(10), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2824-:d:176917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okkonen, Lasse & Lehtonen, Olli, 2016. "Socio-economic impacts of community wind power projects in Northern Scotland," Renewable Energy, Elsevier, vol. 85(C), pages 826-833.
    2. Andrew McCarthy & Rob Dellink & Ruben Bibas, 2018. "The Macroeconomics of the Circular Economy Transition: A Critical Review of Modelling Approaches," OECD Environment Working Papers 130, OECD Publishing.
    3. Kirchherr, Julian & Piscicelli, Laura & Bour, Ruben & Kostense-Smit, Erica & Muller, Jennifer & Huibrechtse-Truijens, Anne & Hekkert, Marko, 2018. "Barriers to the Circular Economy: Evidence From the European Union (EU)," Ecological Economics, Elsevier, vol. 150(C), pages 264-272.
    4. Allan, Grant J. & Bryden, Ian & McGregor, Peter G. & Stallard, Tim & Kim Swales, J. & Turner, Karen & Wallace, Robin, 2008. "Concurrent and legacy economic and environmental impacts from establishing a marine energy sector in Scotland," Energy Policy, Elsevier, vol. 36(7), pages 2734-2753, July.
    5. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    6. Allan, G.J. & Lecca, P. & McGregor, P.G. & Swales, J.K., 2014. "The economic impacts of marine energy developments: A case study from Scotland," Marine Policy, Elsevier, vol. 43(C), pages 122-131.
    7. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
    8. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    9. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe," Renewable Energy, Elsevier, vol. 50(C), pages 889-900.
    10. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanegas-Cantarero, María M. & Pennock, Shona & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Beyond LCOE: A multi-criteria evaluation framework for offshore renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Marlene O’Sullivan & Dietmar Edler, 2020. "Gross Employment Effects in the Renewable Energy Industry in Germany—An Input–Output Analysis from 2000 to 2018," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    3. Bianchi, Marco & Fernandez, Iratxe Fernandez, 2024. "A systematic methodology to assess local economic impacts of ocean renewable energy projects: Application to a tidal energy farm," Renewable Energy, Elsevier, vol. 221(C).
    4. O'Sullivan, Marlene & Edler, Dietmar, 2020. "Gross Employment Effects in the Renewable Energy Industry in Germany : An Input–Output Analysis from 2000 to 2018," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15).
    5. Eugen Rusu & Vengatesan Venugopal, 2019. "Special Issue “Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind”," Energies, MDPI, vol. 12(1), pages 1-4, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    2. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    3. Jahanshahi, Akram & Kamali, Mohammadreza & Khalaj, Mohammadreza & Khodaparast, Zahra, 2019. "Delphi-based prioritization of economic criteria for development of wave and tidal energy technologies," Energy, Elsevier, vol. 167(C), pages 819-827.
    4. Ruano-Chamorro, Cristina & Castilla, Juan Carlos & Gelcich, Stefan, 2018. "Human dimensions of marine hydrokinetic energies: Current knowledge and research gaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 1979-1989.
    5. Jenkins, Lekelia Danielle & Dreyer, Stacia Jeanne & Polis, Hilary Jacqueline & Beaver, Ezra & Kowalski, Adam A. & Linder, Hannah L. & McMillin, Thomas Neal & McTiernan, Kaylie Laura & Rogier, Thea The, 2018. "Human dimensions of tidal energy: A review of theories and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 323-337.
    6. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    7. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    8. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    9. Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
    10. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Martić, Ivana & Degiuli, Nastia & Grlj, Carlo Giorgio, 2024. "Scaling of wave energy converters for optimum performance in the Adriatic Sea," Energy, Elsevier, vol. 294(C).
    12. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    13. OCOLIȘANU Andreea & DOBROTĂ Gabriela & AGÂRBICEANU Marcela Simona, 2022. "The Implications Of The Circular Economy On Sustainable Economic Growth," Management of Sustainable Development, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(1), pages 16-21, June.
    14. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    15. Dalton, Gordon & Allan, Grant & Beaumont, Nicola & Georgakaki, Aliki & Hacking, Nick & Hooper, Tara & Kerr, Sandy & O’Hagan, Anne Marie & Reilly, Kieran & Ricci, Pierpaolo & Sheng, Wanan & Stallard, T, 2015. "Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 850-878.
    16. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    18. Bongers, Anelí & Casas, Pablo, 2022. "The circular economy and the optimal recycling rate: A macroeconomic approach," Ecological Economics, Elsevier, vol. 199(C).
    19. Hashemi, M. Reza & Grilli, Stéphan T. & Neill, Simon P., 2016. "A simplified method to estimate tidal current effects on the ocean wave power resource," Renewable Energy, Elsevier, vol. 96(PA), pages 257-269.
    20. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2824-:d:176917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.