IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp372-382.html
   My bibliography  Save this article

ISWEC linear quadratic regulator oscillating control

Author

Listed:
  • Vissio, Giacomo
  • Valério, Duarte
  • Bracco, Giovanni
  • Beirão, Pedro
  • Pozzi, Nicola
  • Mattiazzo, Giuliana

Abstract

Wave energy is one of the most promising technologies for the future of renewable energy. Its steady, even if not dashing, development, both in theoretical and applied solutions, will bring the field, in the mid-term, to the point of being a viable, economical and sustainable technology, competitive when compared to more mature ones. This paper deals with the ISWEC (Inertial Sea Wave Energy Converter) power take off (PTO) technology and control strategies. In particular it focuses on the control strategy used for harnessing energy during its first deployment, and presents the development of a new controller designed using optimal control theory. The approach to the problem of this work is not to seek for the theoretical optimal control strategy. In fact, during the test period of the ISWEC into the sea, limitations of a model-optimized control strategy came out, due to well known shortcomings of hydrodynamics modeling theory for wave energy devices, and the idea of an easy-to-tune in the field controller arose. This work points out in the direction of developing a practical and effective strategy for industrial application, with the main objective of increasing the power production while simplifying the control law by which the device harnesses energy.

Suggested Citation

  • Vissio, Giacomo & Valério, Duarte & Bracco, Giovanni & Beirão, Pedro & Pozzi, Nicola & Mattiazzo, Giuliana, 2017. "ISWEC linear quadratic regulator oscillating control," Renewable Energy, Elsevier, vol. 103(C), pages 372-382.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:372-382
    DOI: 10.1016/j.renene.2016.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116310308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bucher, R. & Jeffrey, H. & Bryden, I.G. & Harrison, G.P., 2016. "Creation of investor confidence: The top-level drivers for reaching maturity in marine energy," Renewable Energy, Elsevier, vol. 88(C), pages 120-129.
    2. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    2. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Hillis, A.J. & Whitlam, C. & Brask, A. & Chapman, J. & Plummer, A.R., 2020. "Active control for multi-degree-of-freedom wave energy converters with load limiting," Renewable Energy, Elsevier, vol. 159(C), pages 1177-1187.
    4. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    4. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2019. "Wave energy resource classification system for US coastal waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 54-68.
    5. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    6. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    7. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    8. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    9. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    10. Oliveira, D. & Lopes de Almeida, J.P.P.G. & Santiago, A. & Rigueiro, C., 2022. "Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter," Renewable Energy, Elsevier, vol. 199(C), pages 226-245.
    11. Cuttler, Michael V.W. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia," Renewable Energy, Elsevier, vol. 146(C), pages 2337-2350.
    12. Ciappi, Lorenzo & Simonetti, Irene & Bianchini, Alessandro & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Application of integrated wave-to-wire modelling for the preliminary design of oscillating water column systems for installations in moderate wave climates," Renewable Energy, Elsevier, vol. 194(C), pages 232-248.
    13. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    14. Lisboa, Rodrigo C. & Teixeira, Paulo R.F. & Torres, Fernando R. & Didier, Eric, 2018. "Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast," Energy, Elsevier, vol. 162(C), pages 1115-1124.
    15. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    16. Samuel Draycott & Iwona Szadkowska & Marta Silva & David M Ingram, 2018. "Assessing the Macro-Economic Benefit of Installing a Farm of Oscillating Water Columns in Scotland and Portugal," Energies, MDPI, vol. 11(10), pages 1-20, October.
    17. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    18. Dimitri V. Val, 2023. "Reliability of Marine Energy Converters," Energies, MDPI, vol. 16(8), pages 1-4, April.
    19. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.
    20. Delpey, Matthias & Lastiri, Ximun & Abadie, Stéphane & Roeber, Volker & Maron, Philippe & Liria, Pedro & Mader, Julien, 2021. "Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast," Renewable Energy, Elsevier, vol. 178(C), pages 79-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:372-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.