IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9151-d1503824.html
   My bibliography  Save this article

Energy Distribution and Working Characteristics of PIPVT Dual-Energy Module

Author

Listed:
  • Bochao Zhou

    (College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

  • Hailong Li

    (College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

  • Chao Wang

    (College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

  • Di Wang

    (Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Xiaoyan Ma

    (School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China)

Abstract

The pavement integrated photovoltaic/thermal (PIPVT) system can comprehensively use solar energy to generate electricity and heat, which is an effective way to use new energy. In this study, we couple heat conduction and convection from the Optics, Electrics, and Solids Modules in the COMSOL Multiphysics Module to build a PIPVT element model to fully understand the energy distribution within the dual-energy module. The simulation results show that when circulating water is introduced into the photovoltaic panels, the temperature on the back of the photovoltaic panels is reduced by 30 °C, and the temperature of the entire dual-energy module board is reduced by 10–15 °C. The introduction of a thermal collector module (T module) can effectively dissipate heat to extend the life of PV modules, and also improve their work efficiency. PIPVT’s solar energy utilization rate is 39.4%, which is a significant improvement compared to the 14.3% solar energy utilization rate of the photovoltaic module (PV module) alone and the 18.7% solar energy utilization rate of the T module. It shows that the dual-energy module has a synergistic effect.

Suggested Citation

  • Bochao Zhou & Hailong Li & Chao Wang & Di Wang & Xiaoyan Ma, 2024. "Energy Distribution and Working Characteristics of PIPVT Dual-Energy Module," Sustainability, MDPI, vol. 16(21), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9151-:d:1503824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnsson, Josef & Adl-Zarrabi, Bijan, 2020. "A numerical and experimental study of a pavement solar collector for the northern hemisphere," Applied Energy, Elsevier, vol. 260(C).
    2. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    3. Gernaat, David E.H.J. & de Boer, Harmen-Sytze & Dammeier, Louise C. & van Vuuren, Detlef P., 2020. "The role of residential rooftop photovoltaic in long-term energy and climate scenarios," Applied Energy, Elsevier, vol. 279(C).
    4. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    5. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    6. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    2. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    3. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    4. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    5. Mingxuan Mao & Xiaoyu Ni, 2024. "A Comprehensive Review of Physical Models and Performance Evaluations for Pavement Photovoltaic Modules," Energies, MDPI, vol. 17(11), pages 1-17, May.
    6. Ghalandari, Taher & Kia, Alalea & Taborda, David M.G. & Van den bergh, Wim & Vuye, Cedric, 2023. "Thermal performance optimisation of Pavement Solar Collectors using response surface methodology," Renewable Energy, Elsevier, vol. 210(C), pages 656-670.
    7. Hu, Hengwu & Vizzari, Domenico & Zha, Xudong & Roberts, Ronald, 2021. "Solar pavements: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    9. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    10. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    12. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    13. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Kim, Sunuk & Oh, Han Jin & Han, Sang Ju & Ko, Han Seo & Shin, Youhwan & Shin, Dong Ho, 2022. "Development of black-ice removal system with latent heat thermal energy storage and solar thermal collectors," Energy, Elsevier, vol. 244(PA).
    16. Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.
    17. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    18. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    19. Godiya Yakubu & Paweł Olejnik & Ademola B. Adisa, 2024. "Variable-Length Pendulum-Based Mechatronic Systems for Energy Harvesting: A Review of Dynamic Models," Energies, MDPI, vol. 17(14), pages 1-36, July.
    20. Wojciech Cieslik & Filip Szwajca & Sławomir Rosolski & Michał Rutkowski & Katarzyna Pietrzak & Jakub Wójtowicz, 2022. "Historical Buildings Potential to Power Urban Electromobility: State-of-the-Art and Future Challenges for Nearly Zero Energy Buildings (nZEB) Microgrids," Energies, MDPI, vol. 15(17), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9151-:d:1503824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.