IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2561-d1401771.html
   My bibliography  Save this article

A Comprehensive Review of Physical Models and Performance Evaluations for Pavement Photovoltaic Modules

Author

Listed:
  • Mingxuan Mao

    (School of Automation, Wuxi University, Wuxi 214105, China
    These authors are co-first author.)

  • Xiaoyu Ni

    (School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    Jiangsu Smart Energy Technology Inc., Nanjing 210013, China
    These authors are co-first author.)

Abstract

Pavement photovoltaic (PV) is an innovative energy-harvesting technology that seamlessly integrates into road surfaces, merging established PV power generation methods with conventional roadway infrastructure. This fusion optimally utilizes the extensive spatial assets inherent in road networks. This paper offers an exhaustive examination of the literature concerning the physical models and performance evaluation of photovoltaic pavements. This study delineates the essential three-tier structure of pavement modules and juxtaposes the advantages and drawbacks of design models across these strata, thereby facilitating the development of more suitable solutions for varying application scenarios. The importance of accommodating fluctuations in shadows and countering the heat island effect (HIE) is emphasized. Nevertheless, the technology remains in its nascent research phase, characterized by challenges associated with limited long-term durability and efficacy. Building upon these findings, this study addresses the challenges confronting pavement PV from three perspectives and outlines future prospects and recommendations for its progression.

Suggested Citation

  • Mingxuan Mao & Xiaoyu Ni, 2024. "A Comprehensive Review of Physical Models and Performance Evaluations for Pavement Photovoltaic Modules," Energies, MDPI, vol. 17(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2561-:d:1401771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Comello, Stephen & Reichelstein, Stefan J. & Sahoo, Anshuman, 2018. "The Road ahead for Solar PV Power," Research Papers 3620, Stanford University, Graduate School of Business.
    2. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    3. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    4. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    6. Ferri, Carlotta & Ziar, Hesan & Nguyen, Thien Tin & van Lint, Hans & Zeman, Miro & Isabella, Olindo, 2022. "Mapping the photovoltaic potential of the roads including the effect of traffic," Renewable Energy, Elsevier, vol. 182(C), pages 427-442.
    7. Mishra, G.K. & Tiwari, G.N., 2020. "Performance evaluation of 7.2 kWp standalone building integrated semi-transparent photovoltaic thermal system," Renewable Energy, Elsevier, vol. 146(C), pages 205-222.
    8. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    9. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    10. Bobes-Jesus, Vanesa & Pascual-Muñoz, Pablo & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2013. "Asphalt solar collectors: A literature review," Applied Energy, Elsevier, vol. 102(C), pages 962-970.
    11. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    12. López-Escalante, M.C. & Fernández-Rodríguez, M. & Caballero, L.J. & Martín, F. & Gabás, M. & Ramos-Barrado, J.R., 2018. "Novel encapsulant architecture on the road to photovoltaic module power output increase," Applied Energy, Elsevier, vol. 228(C), pages 1901-1910.
    13. Zhou, Bochao & Pei, Jianzhong & Xue, Bin & Guo, Fucheng & Wen, Yong & Zhang, Jiupeng & Li, Rui, 2019. "Solar/road from ‘forced coexistence’ to ‘harmonious symbiosis’," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    2. Zhou, Bochao & Pei, Jianzhong & Calautit, John Kaiser & Zhang, Jiupeng & Yong, Ling Xin & Pantua, Conrad Allan Jay, 2022. "Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT)," Renewable Energy, Elsevier, vol. 194(C), pages 1-12.
    3. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    4. Hu, Hengwu & Zha, Xudong & Niu, Chao & Wang, Ziwei & Lv, Ruidong, 2024. "Structural optimization and performance testing of concentrated photovoltaic panels for pavement," Applied Energy, Elsevier, vol. 356(C).
    5. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Mohamed E. Al-Atroush, 2022. "Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy," Energies, MDPI, vol. 15(3), pages 1-26, February.
    6. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    7. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    8. Said Bentouba & Nadjet Zioui & Peter Breuhaus & Mahmoud Bourouis, 2023. "Overview of the Potential of Energy Harvesting Sources in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, July.
    9. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    10. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    11. Mao, Mingxuan & Chen, Siyu & Yan, Jinyue, 2023. "Modelling pavement photovoltaic arrays with cellular automata," Applied Energy, Elsevier, vol. 330(PB).
    12. Nurullah Kayaci & Baris Burak Kanbur, 2023. "Numerical and Economic Analysis of Hydronic-Heated Anti-Icing Solutions on Underground Park Driveways," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    13. Zabihi, Niloufar & Gu, Zewen & Saafi, Mohamed, 2023. "Crank shaft road electromagnetic road energy harvester for smart city applications," Applied Energy, Elsevier, vol. 352(C).
    14. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
    15. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    16. Yadav, Somil & Panda, S.K., 2020. "Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel," Renewable Energy, Elsevier, vol. 150(C), pages 136-146.
    17. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    18. Diogo Correia & Adelino Ferreira, 2021. "Energy Harvesting on Airport Pavements: State-of-the-Art," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    19. Lubinda F. Walubita & Dagbegnon Clement Sohoulande Djebou & Abu N. M. Faruk & Sang Ick Lee & Samer Dessouky & Xiaodi Hu, 2018. "Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    20. Yangyang Zhang & Qi Lai & Ji Wang & Chaofeng Lü, 2022. "Piezoelectric Energy Harvesting from Roadways under Open-Traffic Conditions: Analysis and Optimization with Scaling Law Method," Energies, MDPI, vol. 15(9), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2561-:d:1401771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.