IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8247-d1483154.html
   My bibliography  Save this article

A Systematic Review on the Technical Performance and Sustainability of 3D Printing Filaments Using Recycled Plastic

Author

Listed:
  • Iman Ibrahim

    (Department of Applied Design, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Ayat Gamal Ashour

    (Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Waleed Zeiada

    (Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Department of Public Works Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Nisreen Salem

    (Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Mohamed Abdallah

    (Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

Abstract

Over the past 40 years, global plastic production has increased twenty-fold, prompting efforts to mitigate plastic waste. Recycling has emerged as the predominant strategy for sustainable plastic waste management. As additive manufacturing (AM) continues to evolve, integrating recycled plastics with various additives has gained significant attention. This systematic literature review, conducted in full accordance with the PRISMA guidelines, aims to evaluate and compare the properties and effects of recycled plastics and their additives in AM. Specifically, it examines the thermal, mechanical, and rheological properties of these materials, along with their life cycle environmental and economic implications. A total of 88 research publications, spanning from 2013 to 2023, were analyzed. The databases searched include Scopus, Web of Science, ProQuest, and Google Scholar, with the final search conducted in December 2023. Studies were selected through a four-stage process—identification, screening, eligibility, and inclusion—based on predefined inclusion and exclusion criteria. The risk of bias was assessed using five criteria: credibility, scope, clarity, methodology, and analysis quality. The results show that most research focuses on the mechanical properties of recycled plastics, with significant gaps in understanding their thermal and rheological properties. Additionally, there is limited research on the environmental and economic viability of these materials, highlighting the need for integrated life cycle assessments and eco-efficiency analyses. This review offers additive manufacturing professionals a comprehensive understanding of the thermal, mechanical, and rheological performance of recycled plastics and additives, supporting efforts to improve sustainability in the industry.

Suggested Citation

  • Iman Ibrahim & Ayat Gamal Ashour & Waleed Zeiada & Nisreen Salem & Mohamed Abdallah, 2024. "A Systematic Review on the Technical Performance and Sustainability of 3D Printing Filaments Using Recycled Plastic," Sustainability, MDPI, vol. 16(18), pages 1-32, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8247-:d:1483154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Tournier & C. M. Topham & A. Gilles & B. David & C. Folgoas & E. Moya-Leclair & E. Kamionka & M.-L. Desrousseaux & H. Texier & S. Gavalda & M. Cot & E. Guémard & M. Dalibey & J. Nomme & G. Cioci & , 2020. "An engineered PET depolymerase to break down and recycle plastic bottles," Nature, Nature, vol. 580(7802), pages 216-219, April.
    2. Naiara Cañado & Erlantz Lizundia & Ortzi Akizu‐Gardoki & Rikardo Minguez & Blanca Lekube & Alex Arrillaga & Maider Iturrondobeitia, 2022. "3D printing to enable the reuse of marine plastic waste with reduced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2092-2107, December.
    3. Antreas Kantaros & Evangelos Soulis & Elli Alysandratou, 2023. "Digitization of Ancient Artefacts and Fabrication of Sustainable 3D-Printed Replicas for Intended Use by Visitors with Disabilities: The Case of Piraeus Archaeological Museum," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    4. Amira Ragab & Rana Elazhary & Siegfried Schmauder & Amna Ramzy, 2023. "Plastic Waste Valorization for Fused Deposition Modeling Feedstock: A Case Study on Recycled Polyethylene Terephthalate/High-Density Polyethylene Sustainability," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yu Yang & Jian Min & Ting Xue & Pengcheng Jiang & Xin Liu & Rouming Peng & Jian-Wen Huang & Yingying Qu & Xian Li & Ning Ma & Fang-Chang Tsai & Longhai Dai & Qi Zhang & Yingle Liu & Chun-Chi Chen & Re, 2023. "Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Jingjing Cao & Huaxing Liang & Jie Yang & Zhiyang Zhu & Jin Deng & Xiaodong Li & Menachem Elimelech & Xinglin Lu, 2024. "Depolymerization mechanisms and closed-loop assessment in polyester waste recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Ian Vázquez‐Rowe & Robert Parker & Helen Hamilton & Huan Liu, 2022. "Industrial ecology for the oceans," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1842-1846, December.
    7. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yang Zhang & Changqi Dong, 2024. "Sustainable Development of Digital Cultural Heritage: A Hybrid Analysis of Crowdsourcing Projects Using fsQCA and System Dynamics," Sustainability, MDPI, vol. 16(17), pages 1-27, September.
    9. Elizabeth L. Bell & Gloria Rosetto & Morgan A. Ingraham & Kelsey J. Ramirez & Clarissa Lincoln & Ryan W. Clarke & Japheth E. Gado & Jacob L. Lilly & Katarzyna H. Kucharzyk & Erika Erickson & Gregg T. , 2024. "Natural diversity screening, assay development, and characterization of nylon-6 enzymatic depolymerization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Trishnamoni Gautom & Dharmendra Dheeman & Colin Levy & Thomas Butterfield & Guadalupe Alvarez Gonzalez & Philip Roy & Lewis Caiger & Karl Fisher & Linus Johannissen & Neil Dixon, 2021. "Structural basis of terephthalate recognition by solute binding protein TphC," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    11. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Kamali, Ali Reza & Li, Siyuan, 2023. "Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance," Applied Energy, Elsevier, vol. 334(C).
    13. P. Konstantin Richter & Paula Blázquez-Sánchez & Ziyue Zhao & Felipe Engelberger & Christian Wiebeler & Georg Künze & Ronny Frank & Dana Krinke & Emanuele Frezzotti & Yuliia Lihanova & Patricia Falken, 2023. "Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Gonzalo Nahuel Bidart & David Teze & Charlotte Uldahl Jansen & Eleonora Pasutto & Natalia Putkaradze & Anna-Mamusu Sesay & Folmer Fredslund & Leila Lo Leggio & Olafur Ögmundarson & Sumesh Sukumara & K, 2024. "Chemoenzymatic indican for light-driven denim dyeing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Qing Ma & Yongjun Gao & Bo Sun & Jianlong Du & Hong Zhang & Ding Ma, 2024. "Grave-to-cradle dry reforming of plastics via Joule heating," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Yinglu Cui & Yanchun Chen & Jinyuan Sun & Tong Zhu & Hua Pang & Chunli Li & Wen-Chao Geng & Bian Wu, 2024. "Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Chen Yang & Yang Liu, 2024. "Preserving Sculptural Heritage in the Era of Digital Transformation: Methods and Challenges of 3D Art Assessment," Sustainability, MDPI, vol. 16(13), pages 1-22, June.
    18. Giovanni Davide Barone & Damir Ferizović & Antonino Biundo & Peter Lindblad, 2020. "Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    19. Teng Bao & Yuanchao Qian & Yongping Xin & James J. Collins & Ting Lu, 2023. "Engineering microbial division of labor for plastic upcycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Hannah Jones & Florence Saffar & Vasileios Koutsos & Dipa Ray, 2021. "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, MDPI, vol. 14(21), pages 1-43, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8247-:d:1483154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.