IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7404-d1465568.html
   My bibliography  Save this article

Occupant-Detection-Based Individual Control of Four-Way Air Conditioner for Sustainable Building Energy Management

Author

Listed:
  • Joon-Hee Ham

    (Department of Architectural Engineering, INHA University, Incheon 22212, Republic of Korea)

  • Bum-Soo Kim

    (Department of Architectural Engineering, INHA University, Incheon 22212, Republic of Korea)

  • In-Woo Bae

    (Department of Architectural Engineering, INHA University, Incheon 22212, Republic of Korea)

  • Jaewan Joe

    (Department of Architectural Engineering, INHA University, Incheon 22212, Republic of Korea
    Department of Smart City Engineering, INHA University, Incheon 22212, Republic of Korea)

Abstract

In this study, individual control of a four-way air conditioner was developed based on the distribution of occupants to prevent unnecessary energy consumption during room-wide control. An occupancy detection algorithm was created in Python using YOLOv5 object recognition technology to identify the occupants’ distribution in space. Recorded video data were used to test the algorithm. A simulation case study for a building energy model was conducted, assuming that this algorithm was applied using surveillance cameras in commercial buildings, such as cafés and restaurants. A grey-box model was established based on measurements in a thermal zone, dividing one space into two zones. The temperature data for the two zones were collected by individually turning on the air conditioner for each zone in turns for a specific period. Manual closure was applied to each supply blade using a tape to provide cooling to the target zone. Finally, through energy simulations, the decreased rates in energy consumption between the proposed individual control and existing room-wide controls were compared. Different scenarios for the occupants’ schedules were considered, and average rates in energy savings of 21–22% were observed, demonstrating the significance of individual control in terms of energy consumption. However, marginal comfort violations were observed, which is inevitable. The developed control method is expected to contribute to sustainable energy management in buildings.

Suggested Citation

  • Joon-Hee Ham & Bum-Soo Kim & In-Woo Bae & Jaewan Joe, 2024. "Occupant-Detection-Based Individual Control of Four-Way Air Conditioner for Sustainable Building Energy Management," Sustainability, MDPI, vol. 16(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7404-:d:1465568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joe, Jaewan & Karava, Panagiota, 2019. "A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings," Applied Energy, Elsevier, vol. 245(C), pages 65-77.
    2. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    2. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    3. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    4. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    5. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    6. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    8. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    9. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).
    10. Khatibi, Mahmood & Rahnama, Samira & Vogler-Finck, Pierre & Dimon Bendtsen, Jan & Afshari, Alireza, 2023. "Towards designing an aggregator to activate the energy flexibility of multi-zone buildings using a hierarchical model-based scheme," Applied Energy, Elsevier, vol. 333(C).
    11. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    12. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    13. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    14. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    15. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2023. "Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models," Applied Energy, Elsevier, vol. 340(C).
    16. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    17. Wei, Ziqing & Ren, Fukang & Zhu, Yikang & Yue, Bao & Ding, Yunxiao & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2022. "Data-driven two-step identification of building thermal characteristics: A case study of office building," Applied Energy, Elsevier, vol. 326(C).
    18. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    19. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    20. Yu, Jianxi & Petersen, Nils & Liu, Pei & Li, Zheng & Wirsum, Manfred, 2022. "Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7404-:d:1465568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.