IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012065.html
   My bibliography  Save this article

Data-driven two-step identification of building thermal characteristics: A case study of office building

Author

Listed:
  • Wei, Ziqing
  • Ren, Fukang
  • Zhu, Yikang
  • Yue, Bao
  • Ding, Yunxiao
  • Zheng, Chunyuan
  • Li, Bin
  • Zhai, Xiaoqiang

Abstract

Thermal characteristics of building affect the energy consumption of air conditioning systems directly. Reverse grey box model is widely used for the identification of thermal characteristics of building. Prior studies have focused on predictive performance, but the reasonableness of the identified results is usually neglected. In addition, as an important characteristic, the air exchange rate is generally predetermined to reduce the complexity of the model because it always deviates from the design value during operation. For the purpose of overcoming the above problems, a two-step identification process based on resistance-capacity model is proposed in this paper. Three critical thermal characteristics, namely, lumped heat transfer coefficient, air exchange rate, and zone air heat capacity are identified by means of least squares method and analytical solution at different steps. The identification results of the three characteristics are 1519.71 W/K, 1242.39 m3/h, and 1513.56 kJ/K, with the error of 21.18%, 10.86% and 3.31%, respectively. The thermal characteristics in this paper are identified rationally while showing similar accuracy to the results from traditional resistance-capacity model. The proposed approach can be used to assess the reasonableness of the thermal characteristics of building for efficiency operation.

Suggested Citation

  • Wei, Ziqing & Ren, Fukang & Zhu, Yikang & Yue, Bao & Ding, Yunxiao & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2022. "Data-driven two-step identification of building thermal characteristics: A case study of office building," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012065
    DOI: 10.1016/j.apenergy.2022.119949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Pengyuan & Braham, William & Yi, Yunkyu, 2018. "Development of a lightweight building simulation tool using simplified zone thermal coupling for fast parametric study," Applied Energy, Elsevier, vol. 223(C), pages 188-214.
    2. Kim, Eui-Jong & He, Xi & Roux, Jean-Jacques & Johannes, Kévyn & Kuznik, Frédéric, 2019. "Fast and accurate district heating and cooling energy demand and load calculations using reduced-order modelling," Applied Energy, Elsevier, vol. 238(C), pages 963-971.
    3. Wang, Junke & Jiang, Yilin & Tang, Choon Yik & Song, Li, 2022. "Development and validation of a second-order thermal network model for residential buildings," Applied Energy, Elsevier, vol. 306(PB).
    4. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    5. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2020. "Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach," Energies, MDPI, vol. 13(11), pages 1-23, June.
    6. Cui, Borui & Fan, Cheng & Munk, Jeffrey & Mao, Ning & Xiao, Fu & Dong, Jin & Kuruganti, Teja, 2019. "A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses," Applied Energy, Elsevier, vol. 236(C), pages 101-116.
    7. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Ding, Yan & Lyu, Yacong & Lu, Shilei & Wang, Ran, 2022. "Load shifting potential assessment of building thermal storage performance for building design," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    2. Yucheng Guo & Jie Shi & Tong Guo & Fei Guo & Feng Lu & Lingqi Su, 2024. "Grey-Box Method for Urban Building Energy Modelling: Advancements and Potentials," Energies, MDPI, vol. 17(21), pages 1-25, October.
    3. Wang, Jiewei & Wei, Ziqing & Zhu, Yikang & Zheng, Chunyuan & Li, Bin & Zhai, Xiaoqiang, 2023. "Demand response via optimal pre-cooling combined with temperature reset strategy for air conditioning system: A case study of office building," Energy, Elsevier, vol. 282(C).
    4. Yue, Bao & Wei, Ziqing & Zheng, Chunyuan & Ding, Yunxiao & Li, Bin & Li, Dongdong & Liang, Xingang & Zhai, Xiaoqiang, 2023. "Power consumption prediction of variable refrigerant flow system through data-physics hybrid approach: An online prediction test in office building," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    2. Yue, Bao & Wei, Ziqing & Zheng, Chunyuan & Ding, Yunxiao & Li, Bin & Li, Dongdong & Liang, Xingang & Zhai, Xiaoqiang, 2023. "Power consumption prediction of variable refrigerant flow system through data-physics hybrid approach: An online prediction test in office building," Energy, Elsevier, vol. 278(PA).
    3. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    4. Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
    5. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    6. Li, Yanfei & O'Neill, Zheng & Zhang, Liang & Chen, Jianli & Im, Piljae & DeGraw, Jason, 2021. "Grey-box modeling and application for building energy simulations - A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Alejandra Aversa & Luis Ballestero & Miguel Chen Austin, 2022. "Highlighting the Probabilistic Behavior of Occupants’ Preferences in Energy Consumption by Integrating a Thermal Comfort Controller in a Tropical Climate," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    8. Yucheng Guo & Jie Shi & Tong Guo & Fei Guo & Feng Lu & Lingqi Su, 2024. "Grey-Box Method for Urban Building Energy Modelling: Advancements and Potentials," Energies, MDPI, vol. 17(21), pages 1-25, October.
    9. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    10. Wang, Xiaoyu & Tian, Shuai & Ren, Jiawen & Jin, Xing & Zhou, Xin & Shi, Xing, 2024. "A novel resistance-capacitance model for evaluating urban building energy loads considering construction boundary heterogeneity," Applied Energy, Elsevier, vol. 361(C).
    11. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    12. Joe, Jaewan & Im, Piljae & Cui, Borui & Dong, Jin, 2023. "Model-based predictive control of multi-zone commercial building with a lumped building modelling approach," Energy, Elsevier, vol. 263(PA).
    13. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    16. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    18. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    19. Jefferson Brooks & Ana Rivera & Miguel Chen Austin & Nathalia Tejedor-Flores, 2022. "A Machine Learning-Based Approach to Estimate Energy Flows of the Mangrove Forest: The Case of Panama Bay," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    20. César Benavente-Peces & Nisrine Ibadah, 2020. "Buildings Energy Efficiency Analysis and Classification Using Various Machine Learning Technique Classifiers," Energies, MDPI, vol. 13(13), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.