IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7360-d1464794.html
   My bibliography  Save this article

The Influence of Three-Dimensional Building Morphology on PM 2.5 Concentrations in the Yangtze River Delta

Author

Listed:
  • Jing Zhang

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
    These authors contributed equally to this work.)

  • Wenjian Zhu

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
    These authors contributed equally to this work.)

  • Dubin Dong

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China)

  • Yuan Ren

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China)

  • Wenhao Hu

    (School of Landscape Architecture and Architecture, Zhejiang A&F University, Hangzhou 311300, China)

  • Xinjie Jin

    (College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China)

  • Zhengxuan He

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China)

  • Jian Chen

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China)

  • Xiaoai Jin

    (State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China)

  • Tianhuan Zhou

    (Zhejiang Forest Resource Monitoring Center, Hangzhou 310020, China)

Abstract

The rapid urbanization of urban areas in China has brought about great variation in the layout of cities and serious air pollution. Recently, the focus has been directed toward understanding the role of urban morphology in the generation and spread of atmospheric pollution, particularly in PM 2.5 emissions. However, there have been limited investigations into the impact of three-dimensional (3D) features on changes in PM 2.5 concentrations. By analyzing a wealth of data on building structures based on a mixed linear model and variance partition analysis in the Yangtze River Delta throughout 2018, this study sought to examine the associations between PM 2.5 concentrations and urban building form, and further compared the contributions of two-dimensional (2D) and 3D building features. The findings revealed that both 2D and 3D building forms played an important role in PM 2.5 concentrations. Notably, the greater contribution of 3D building forms on PM 2.5 concentrations was observed, especially during the summer, where they accounted for 20% compared to 7% for 2D forms. In particular, the building height range emerged as a crucial local factor affecting PM 2.5 concentrations, contributing up to 12%. Moreover, taller buildings with more variability in height were found to aid in the dispersion of pollution. These results underscore the substantial contribution of 3D building morphology to PM 2.5 pollution, contrasting with previous studies. Furthermore, compact buildings were linked to lower pollution levels, and an urban landscape characterized by polycentric urban structures and lower fragmentation was deemed more favorable for sustainable urban development. This study is significant in investigating the contribution of 3D morphology to PM 2.5 and its importance for pollution dispersion mechanisms. It suggests the adoption of a polycentric urban form with a broader range of building heights in urban planning for local governments in the Yangtze River Delta.

Suggested Citation

  • Jing Zhang & Wenjian Zhu & Dubin Dong & Yuan Ren & Wenhao Hu & Xinjie Jin & Zhengxuan He & Jian Chen & Xiaoai Jin & Tianhuan Zhou, 2024. "The Influence of Three-Dimensional Building Morphology on PM 2.5 Concentrations in the Yangtze River Delta," Sustainability, MDPI, vol. 16(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7360-:d:1464794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiou Yang & Wenbo Chen & Zhaofeng Liang, 2017. "Impact of Land Use on PM 2.5 Pollution in a Representative City of Middle China," IJERPH, MDPI, vol. 14(5), pages 1-14, April.
    2. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    2. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    3. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    4. Zhixiong Tan & Haili Wu & Qingyang Chen & Jiejun Huang, 2024. "Spatiotemporal Analysis of Air Quality and Its Driving Factors in Beijing’s Main Urban Area," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    5. Yana Jin & Henrik Andersson & Shiqiu Zhang, 2016. "Air Pollution Control Policies in China: A Retrospective and Prospects," IJERPH, MDPI, vol. 13(12), pages 1-22, December.
    6. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    7. Hujia Zhao & Ke Gui & Yanjun Ma & Yangfeng Wang & Yaqiang Wang & Hong Wang & Yu Zheng & Lei Li & Lei Zhang & Yuqi Zhang & Huizheng Che & Xiaoye Zhang, 2022. "Multi-Year Variation of Ozone and Particulate Matter in Northeast China Based on the Tracking Air Pollution in China (TAP) Data," IJERPH, MDPI, vol. 19(7), pages 1-23, March.
    8. Ruiqing Ma & Yeyue Zhang & Yini Zhang & Xi Li & Zheng Ji, 2023. "The Relationship between the Transmission of Different SARS-CoV-2 Strains and Air Quality: A Case Study in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    9. Hongfeng Zhang & Lu Huang & Yan Zhu & Hongyun Si & Xu He, 2021. "Does Low-Carbon City Construction Improve Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    10. Widya Liadira Kusuma & Wu Chih-Da & Zeng Yu-Ting & Handayani Hepi Hapsari & Jaelani Lalu Muhamad, 2019. "PM 2.5 Pollutant in Asia—A Comparison of Metropolis Cities in Indonesia and Taiwan," IJERPH, MDPI, vol. 16(24), pages 1-12, December.
    11. Han-Yin Sun & Ci-Wen Luo & Yun-Wei Chiang & Kun-Lin Yeh Yi-Ching Li & Yung-Chung Ho & Shiuan-Shinn Lee & Wen-Ying Chen & Chun-Jung Chen & Yu-Hsiang Kuan, 2021. "Association Between PM 2.5 Exposure Level and Primary Open-Angle Glaucoma in Taiwanese Adults: A Nested Case–control Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    12. Zhang, Dongyang, 2023. "Can environmental monitoring power transition curb corporate greenwashing behavior?," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 199-218.
    13. Ying Zhang & Shouming Chen & Yujia Li & Disney Leite Ramos, 2024. "Does Environmental Protection Law Bring about Greenwashing? Evidence from Heavy-Polluting Firms in China," Sustainability, MDPI, vol. 16(5), pages 1-20, February.
    14. Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).
    15. Shr, Yau-Huo & Hsu, Wen & Hwang, Bing-Fang & Jung, Chau-Ren, 2023. "Air quality and risky behaviors on roads," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    16. Jie Yang & Pengfei Liu & Hongquan Song & Changhong Miao & Feng Wang & Yu Xing & Wenjie Wang & Xinyu Liu & Mengxin Zhao, 2021. "Effects of Anthropogenic Emissions from Different Sectors on PM 2.5 Concentrations in Chinese Cities," IJERPH, MDPI, vol. 18(20), pages 1-13, October.
    17. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    18. Diyi Liu & Kun Cheng & Kevin Huang & Hui Ding & Tiantong Xu & Zhenni Chen & Yanqi Sun, 2022. "Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    19. Ling-ling Zhang & Rui Zhang & Zong-zhi Wang, 2024. "Intergovernmental collaboration, instrument adaptation and embedded synergistic governance: based on 1984–2020 water pollution control policy research," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28727-28749, November.
    20. Eun-Min Cho & Hyung Jin Jeon & Dan Ki Yoon & Si Hyun Park & Hyung Jin Hong & Kil Yong Choi & Heun Woo Cho & Hyo Chang Cheon & Cheol Min Lee, 2019. "Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations," IJERPH, MDPI, vol. 16(8), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7360-:d:1464794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.