IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i8p1430-d224921.html
   My bibliography  Save this article

Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations

Author

Listed:
  • Eun-Min Cho

    (Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Korea)

  • Hyung Jin Jeon

    (Korea Environmental Information Center, Korea Environment Institute, Bldg B, 370 Sicheong-daero, Sejong-si 30147, Korea)

  • Dan Ki Yoon

    (Institute of Risk Assessment, Department of Chemical & Biological Engineering, Seokyeong University, 124 Seogyeong-ro, Seongbuk-gu, Seoul 02173, Korea)

  • Si Hyun Park

    (Institute of Risk Assessment, Department of Chemical & Biological Engineering, Seokyeong University, 124 Seogyeong-ro, Seongbuk-gu, Seoul 02173, Korea)

  • Hyung Jin Hong

    (Institute of Risk Assessment, Department of Chemical & Biological Engineering, Seokyeong University, 124 Seogyeong-ro, Seongbuk-gu, Seoul 02173, Korea)

  • Kil Yong Choi

    (Institute of Risk Assessment, Department of Chemical & Biological Engineering, Seokyeong University, 124 Seogyeong-ro, Seongbuk-gu, Seoul 02173, Korea)

  • Heun Woo Cho

    (E-Three. Co., Ltd, B-309, Woolim Blue 9 Business Center, Yangcheon-ro 583, Gangseo-gu, Seoul 07547, Korea)

  • Hyo Chang Cheon

    (E-Three. Co., Ltd, B-309, Woolim Blue 9 Business Center, Yangcheon-ro 583, Gangseo-gu, Seoul 07547, Korea)

  • Cheol Min Lee

    (Institute of Risk Assessment, Department of Chemical & Biological Engineering, Seokyeong University, 124 Seogyeong-ro, Seongbuk-gu, Seoul 02173, Korea)

Abstract

Currently, low-cost, sensor-based fine dust measurement devices are commercially available in South Korea. This study evaluated the reliability of three such devices—Yi Shan A4, Plantower PMS7003, and Plantower PMS7003—in comparison to long-term consecutive monitoring systems for discharge and prevention facilities regarding fine dust control. The performance of these devices for concentration intervals over time was examined through real-time comparison using a GRIMM (Model: 11-A, dust spectrometer from Grimm Technologies) as a reference; this included a correction factor (C-Factor), calculated by a gravimetric method and an equivalence test. For comparison, the reference and target devices were installed in a chamber with fine dust concentrations of 2 µg/m 3 , with temperature and humidity maintained at 20 °C and 40%, respectively. The fine particulate matter (PM) 2.5 concentrations were classified into five intervals: ≤40 µg/m 3 , 40–80 µg/m 3 , 80–120 µg/m 3 , 120–160 µg/m 3 , and 200–230 µg/m 3 . Statistical analysis was performed using data obtained from national stations for monitoring and controlling fine dust released from facilities under high fine dust loading conditions. The results showed that the measurements of all target devices, which were corrected according to the reference device, provided accurate values at PM 2.5 concentrations of ≥40 µg/m 3 . The statistical analysis results suggest that the evaluated devices are more reliable than the conventional numerical-analysis-based monitoring system

Suggested Citation

  • Eun-Min Cho & Hyung Jin Jeon & Dan Ki Yoon & Si Hyun Park & Hyung Jin Hong & Kil Yong Choi & Heun Woo Cho & Hyo Chang Cheon & Cheol Min Lee, 2019. "Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations," IJERPH, MDPI, vol. 16(8), pages 1-10, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1430-:d:224921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/8/1430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/8/1430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romina Paolucci & Marianna Rotilio & Stefano Ricci & Andrea Pelliccione & Giuseppe Ferri, 2022. "A Sensor-Based System for Dust Containment in the Construction Site," Energies, MDPI, vol. 15(19), pages 1-20, October.
    2. Davide Simeone & Marianna Rotilio & Federica Cucchiella, 2023. "Construction Work and Utilities in Historic Centers: Strategies for a Transition towards Fuel-Free Construction Sites," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhang & Wenjian Zhu & Dubin Dong & Yuan Ren & Wenhao Hu & Xinjie Jin & Zhengxuan He & Jian Chen & Xiaoai Jin & Tianhuan Zhou, 2024. "The Influence of Three-Dimensional Building Morphology on PM 2.5 Concentrations in the Yangtze River Delta," Sustainability, MDPI, vol. 16(17), pages 1-17, August.
    2. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    3. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    4. Zhixiong Tan & Haili Wu & Qingyang Chen & Jiejun Huang, 2024. "Spatiotemporal Analysis of Air Quality and Its Driving Factors in Beijing’s Main Urban Area," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    5. Yana Jin & Henrik Andersson & Shiqiu Zhang, 2016. "Air Pollution Control Policies in China: A Retrospective and Prospects," IJERPH, MDPI, vol. 13(12), pages 1-22, December.
    6. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    7. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    8. Hujia Zhao & Ke Gui & Yanjun Ma & Yangfeng Wang & Yaqiang Wang & Hong Wang & Yu Zheng & Lei Li & Lei Zhang & Yuqi Zhang & Huizheng Che & Xiaoye Zhang, 2022. "Multi-Year Variation of Ozone and Particulate Matter in Northeast China Based on the Tracking Air Pollution in China (TAP) Data," IJERPH, MDPI, vol. 19(7), pages 1-23, March.
    9. Ruiqing Ma & Yeyue Zhang & Yini Zhang & Xi Li & Zheng Ji, 2023. "The Relationship between the Transmission of Different SARS-CoV-2 Strains and Air Quality: A Case Study in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    10. Hongfeng Zhang & Lu Huang & Yan Zhu & Hongyun Si & Xu He, 2021. "Does Low-Carbon City Construction Improve Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    11. Han-Yin Sun & Ci-Wen Luo & Yun-Wei Chiang & Kun-Lin Yeh Yi-Ching Li & Yung-Chung Ho & Shiuan-Shinn Lee & Wen-Ying Chen & Chun-Jung Chen & Yu-Hsiang Kuan, 2021. "Association Between PM 2.5 Exposure Level and Primary Open-Angle Glaucoma in Taiwanese Adults: A Nested Case–control Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    12. Zhang, Dongyang, 2023. "Can environmental monitoring power transition curb corporate greenwashing behavior?," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 199-218.
    13. Ying Zhang & Shouming Chen & Yujia Li & Disney Leite Ramos, 2024. "Does Environmental Protection Law Bring about Greenwashing? Evidence from Heavy-Polluting Firms in China," Sustainability, MDPI, vol. 16(5), pages 1-20, February.
    14. Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).
    15. Shr, Yau-Huo & Hsu, Wen & Hwang, Bing-Fang & Jung, Chau-Ren, 2023. "Air quality and risky behaviors on roads," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    16. Jie Yang & Pengfei Liu & Hongquan Song & Changhong Miao & Feng Wang & Yu Xing & Wenjie Wang & Xinyu Liu & Mengxin Zhao, 2021. "Effects of Anthropogenic Emissions from Different Sectors on PM 2.5 Concentrations in Chinese Cities," IJERPH, MDPI, vol. 18(20), pages 1-13, October.
    17. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    18. Diyi Liu & Kun Cheng & Kevin Huang & Hui Ding & Tiantong Xu & Zhenni Chen & Yanqi Sun, 2022. "Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    19. Qi Chen & Ruqian Miao & Guannan Geng & Manish Shrivastava & Xu Dao & Bingye Xu & Jiaqi Sun & Xian Zhang & Mingyuan Liu & Guigang Tang & Qian Tang & Hanwen Hu & Ru-Jin Huang & Hao Wang & Yan Zheng & Yu, 2024. "Widespread 2013-2020 decreases and reduction challenges of organic aerosol in China," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Deguang Li & Zhicheng Ding & Jianghuan Liu & Qiurui He & Hamad Naeem, 2022. "Exploring Spatiotemporal Dynamics of PM 2.5 Emission Based on Nighttime Light in China from 2012 to 2018," Sustainability, MDPI, vol. 14(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1430-:d:224921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.