IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7276-d1463008.html
   My bibliography  Save this article

Assessing Climate Change Projections through High-Resolution Modelling: A Comparative Study of Three European Cities

Author

Listed:
  • Ana Ascenso

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Bruno Augusto

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Sílvia Coelho

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Isilda Menezes

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Alexandra Monteiro

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Sandra Rafael

    (IDAD—Institute of Environment and Development, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Joana Ferreira

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Carla Gama

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Peter Roebeling

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Ana Isabel Miranda

    (CESAM & Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

Climate change is expected to influence urban living conditions, challenging cities to adopt mitigation and adaptation measures. This paper assesses climate change projections for different urban areas in Europe –Eindhoven (The Netherlands), Genova (Italy) and Tampere (Finland)—and discusses how nature-based solutions (NBS) can help climate change adaptation in these cities. The Weather Research and Forecasting Model was used to simulate the climate of the recent past and the medium-term future, considering the RCP4.5 scenario, using nesting capabilities and high spatial resolution (1 km 2 ). Climate indices focusing on temperature-related metrics are calculated for each city: Daily Temperature Range, Summer Days, Tropical Nights, Icing Days, and Frost Days. Despite the uncertainties of this modelling study, it was possible to identify some potential trends for the future. The strongest temperature increase was found during winter, whereas warming is less distinct in summer, except for Tampere, which could experience warmer summers and colder winters. The warming in Genova is predicted mainly outside of the main urban areas. Results indicate that on average the temperature in Eindhoven will increase more than in Genova, while in Tampere a small reduction in annual average temperature was estimated. NBS could help mitigate the increase in Summer Days and Tropical Nights projected for Genova and Eindhoven in the warmer months, and the increase in the number of Frost Days and Icing Days in Eindhoven (in winter) and Tampere (in autumn). To avoid undesirable impacts of NBS, proper planning concerning the location and type of NBS, vegetation characteristics and seasonality, is needed.

Suggested Citation

  • Ana Ascenso & Bruno Augusto & Sílvia Coelho & Isilda Menezes & Alexandra Monteiro & Sandra Rafael & Joana Ferreira & Carla Gama & Peter Roebeling & Ana Isabel Miranda, 2024. "Assessing Climate Change Projections through High-Resolution Modelling: A Comparative Study of Three European Cities," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7276-:d:1463008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7276/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7276/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allison Thomson & Katherine Calvin & Steven Smith & G. Kyle & April Volke & Pralit Patel & Sabrina Delgado-Arias & Ben Bond-Lamberty & Marshall Wise & Leon Clarke & James Edmonds, 2011. "RCP4.5: a pathway for stabilization of radiative forcing by 2100," Climatic Change, Springer, vol. 109(1), pages 77-94, November.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    2. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    3. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    4. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    5. Kang, Hyunwoo & Sridhar, Venkataramana & Mills, Bradford F. & Hession, W. Cully & Ogejo, Jactone A., 2019. "Economy-wide climate change impacts on green water droughts based on the hydrologic simulations," Agricultural Systems, Elsevier, vol. 171(C), pages 76-88.
    6. Calvin, Katherine & Wise, Marshall & Clarke, Leon & Edmonds, James & Jones, Andrew & Thomson, Allison, 2014. "Near-term limits to mitigation: Challenges arising from contrary mitigation effects from indirect land-use change and sulfur emissions," Energy Economics, Elsevier, vol. 42(C), pages 233-239.
    7. Mishra, Gouri Shankar & Zakerinia, Saleh & Yeh, Sonia & Teter, Jacob & Morrison, Geoff, 2014. "Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift," Energy Economics, Elsevier, vol. 44(C), pages 448-455.
    8. Hem H Dholakia & Vimal Mishra & Amit Garg, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," Working Papers id:7115, eSocialSciences.
    9. Nir Y. Krakauer, 2014. "Economic Growth Assumptions in Climate and Energy Policy," Sustainability, MDPI, vol. 6(3), pages 1-14, March.
    10. George Katavoutas & Dimitra Founda & Gianna Kitsara & Christos Giannakopoulos, 2021. "Climate Change and Thermal Comfort in Top Tourist Destinations—The Case of Santorini (Greece)," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    11. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    12. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    13. Ruffato-Ferreira, Vera & da Costa Barreto, Renata & Oscar Júnior, Antonio & Silva, Wanderson Luiz & de Berrêdo Viana, Daniel & do Nascimento, José Antonio Sena & de Freitas, Marcos Aurélio Vasconcelos, 2017. "A foundation for the strategic long-term planning of the renewable energy sector in Brazil: Hydroelectricity and wind energy in the face of climate change scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1124-1137.
    14. Jean-François Lamarque & G. Kyle & Malte Meinshausen & Keywan Riahi & Steven Smith & Detlef Vuuren & Andrew Conley & Francis Vitt, 2011. "Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways," Climatic Change, Springer, vol. 109(1), pages 191-212, November.
    15. Silva Herran, Diego & Tachiiri, Kaoru & Matsumoto, Ken'ichi, 2019. "Global energy system transformations in mitigation scenarios considering climate uncertainties," Applied Energy, Elsevier, vol. 243(C), pages 119-131.
    16. Hailu Wondmageghu Tenfie & Fokke Saathoff & Dereje Hailu & Alemayehu Gebissa, 2022. "Selection of Representative General Circulation Models for Climate Change Study Using Advanced Envelope-Based and Past Performance Approach on Transboundary River Basin, a Case of Upper Blue Nile Basi," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    17. Dholakia, Hem H. & Mishra, Vimal & Garg, Amit, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," IIMA Working Papers WP2015-05-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    18. Shakil Ahmad Romshoo & Asif Marazi, 2022. "Impact of climate change on snow precipitation and streamflow in the Upper Indus Basin ending twenty-first century," Climatic Change, Springer, vol. 170(1), pages 1-20, January.
    19. Shi, Wenjing & Ou, Yang & Smith, Steven J. & Ledna, Catherine M. & Nolte, Christopher G. & Loughlin, Daniel H., 2017. "Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA," Applied Energy, Elsevier, vol. 208(C), pages 511-521.
    20. Kun Peng & Kuishuang Feng & Bin Chen & Yuli Shan & Ning Zhang & Peng Wang & Kai Fang & Yanchao Bai & Xiaowei Zou & Wendong Wei & Xinyi Geng & Yiyi Zhang & Jiashuo Li, 2023. "The global power sector’s low-carbon transition may enhance sustainable development goal achievement," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7276-:d:1463008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.