IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6978-d1456483.html
   My bibliography  Save this article

The Urban–Rural Transformation and Its Influencing Mechanisms on Air Pollution in the Yellow River Basin

Author

Listed:
  • Chen Xu

    (Jiangsu Provincial Planning and Design Group, Nanjing 210036, China
    Co-first authors.)

  • Zhenzhen Yin

    (School of Architecture, Zhengzhou University, Zhengzhou 450066, China
    Co-first authors.)

  • Wei Sun

    (Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

  • Zhi Cao

    (Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China)

  • Mingyang Cheng

    (School of Architecture, Zhengzhou University, Zhengzhou 450066, China)

Abstract

Air pollution has recently gained much attention from the general population. Despite pollution control being an issue in both urban and rural regions, most of the available research has concentrated on urban districts. Hence, investigations into how urban–rural transition affects PM 2.5 are warranted within the framework of urban–rural integration. Using the Yellow River Basin as a case study, this study employed the entropy method and Analytic Hierarchy Process (AHP) to uncover the extent of urban–rural transformation. It then used the spatial autocorrelation method to investigate the spatiotemporal features of PM 2.5 and the spatial econometric model to investigate the mechanisms that influence the relationship between urban–rural transformation and PM 2.5 . The results are as follows: (1) The level of urban–rural transformation shows an obvious upward trend with time. The development has progressed from asymmetrical north-east and south-west elevations to a more balanced pattern of north-east, middle-east, and west-west elevations. (2) The PM 2.5 concentration increased steadily, then fluctuated, and finally decreased. Notably, the general pattern has not changed much, and it is high in the east and low in the west. (3) Different subsystems of the urban–rural transformation have different impacts on air pollution at different stages. The influence of industrial transformation (IT) on PM 2.5 showed an inverted “N-shaped” curve of negative–negative–changes, and the industrial structure played a leading role in the spatiotemporal evolution of PM 2.5 . An inverted “U-shaped” curve forms the left side of the impact of population transition (PT) on PM 2.5 . Land transformation (LT) has a “U-shaped” curve for its effect on PM 2.5 . This study provides a new perspective on the topic of PM 2.5 and its connection to urban–rural integration, which is crucial to understanding the dynamics of this shift. To achieve the goal of high-quality development, this study supports regional initiatives to reduce PM 2.5 emissions in the Yellow River Basin. Moreover, the results of this study can provide a reference for decision-makers in the world’s densely populated areas that suffer from serious air pollution.

Suggested Citation

  • Chen Xu & Zhenzhen Yin & Wei Sun & Zhi Cao & Mingyang Cheng, 2024. "The Urban–Rural Transformation and Its Influencing Mechanisms on Air Pollution in the Yellow River Basin," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6978-:d:1456483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6978/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6978/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huaxue Zhao & Yu Cheng & Ruijing Zheng, 2022. "Impact of the Digital Economy on PM 2.5 : Experience from the Middle and Lower Reaches of the Yellow River Basin," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    2. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    3. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    3. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    4. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    5. Hongjun Yu & Jiali Cheng & Shelby Paige Gordon & Ruopeng An & Miao Yu & Xiaodan Chen & Qingli Yue & Jun Qiu, 2018. "Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    6. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    7. Yang Zhong & Aiwen Lin & Zhigao Zhou & Feiyan Chen, 2018. "Spatial Pattern Evolution and Optimization of Urban System in the Yangtze River Economic Belt, China, Based on DMSP-OLS Night Light Data," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    8. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    9. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    10. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    11. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    12. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    13. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    14. Keshab Thapa & Melanie Laforest & Catherine Banning & Shirley Thompson, 2024. "“Where the Moose Were”: Fort William First Nation’s Ancestral Land, Two–Eyed Seeing, and Industrial Impacts," Land, MDPI, vol. 13(12), pages 1-28, November.
    15. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    16. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    17. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    18. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    19. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    20. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6978-:d:1456483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.