IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp1070-1078.html
   My bibliography  Save this article

Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data

Author

Listed:
  • Xiao, Hongwei
  • Ma, Zhongyu
  • Mi, Zhifu
  • Kelsey, John
  • Zheng, Jiali
  • Yin, Weihua
  • Yan, Min

Abstract

Delay in publication of energy statistics prevents a timely assessment of progress towards meeting targets for energy saving and emission reduction in China. This makes it difficult to meet the requirements to rapidly monitor and evaluate energy consumption for each province. In this study, an alternative approach is provided to estimate the energy consumption by using satellite remote sensing data. We develop spatio-temporal geographically weighted regression models to simulate energy consumption of provinces in China based on the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) global stable night-time light data. The models simulate China’s energy consumption accurately with the goodness of fit higher than 99%. Generally, the national average annual energy consumption is 2.8 billion tonnes of coal equivalent in China between 2000 and 2013, which is close to the actual value with errors smaller than 0.1%. From both temporal and spatial dimensions, the relative errors are smaller than 5.5% at the provincial level. Therefore, the use of satellite night-time light data provides a useful reference in monitoring and assessing provincial energy consumption in China.

Suggested Citation

  • Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1070-1078
    DOI: 10.1016/j.apenergy.2018.09.200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918315174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    2. Minghong Tan, 2015. "Urban Growth and Rural Transition in China Based on DMSP/OLS Nighttime Light Data," Sustainability, MDPI, vol. 7(7), pages 1-14, July.
    3. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    4. Tilottama Ghosh & Christopher D. Elvidge & Paul C. Sutton & Kimberly E. Baugh & Daniel Ziskin & Benjamin T. Tuttle, 2010. "Creating a Global Grid of Distributed Fossil Fuel CO 2 Emissions from Nighttime Satellite Imagery," Energies, MDPI, vol. 3(12), pages 1-19, December.
    5. Zhu Liu & Steven J. Davis & Kuishuang Feng & Klaus Hubacek & Sai Liang & Laura Diaz Anadon & Bin Chen & Jingru Liu & Jinyue Yan & Dabo Guan, 2016. "Targeted opportunities to address the climate–trade dilemma in China," Nature Climate Change, Nature, vol. 6(2), pages 201-206, February.
    6. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    7. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    8. Liu, Zhu, 2016. "National carbon emissions from the industry process: Production of glass, soda ash, ammonia, calcium carbide and alumina," Applied Energy, Elsevier, vol. 166(C), pages 239-244.
    9. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    10. Zhaoxin Dai & Yunfeng Hu & Guanhua Zhao, 2017. "The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    11. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    12. Meng, Lina & Graus, Wina & Worrell, Ernst & Huang, Bo, 2014. "Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery: Methodological challenges and a ," Energy, Elsevier, vol. 71(C), pages 468-478.
    13. Raupach, M.R. & Rayner, P.J. & Paget, M., 2010. "Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions," Energy Policy, Elsevier, vol. 38(9), pages 4756-4764, September.
    14. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    15. Cong, Rong-Gang & Wei, Yi-Ming, 2012. "Experimental comparison of impact of auction format on carbon allowance market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4148-4156.
    16. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Jijun & Yu, Chenyang & Xue, Rui & Yang, Dong & Shan, Yuli, 2022. "Can regional integration narrow city-level energy efficiency gap in China?," Energy Policy, Elsevier, vol. 163(C).
    2. Tianjiao Yang & Jing Liu & Haibo Mi & Zhicheng Cao & Yiting Wang & Huichao Han & Jiahui Luan & Zhaoxuan Wang, 2022. "An Estimating Method for Carbon Emissions of China Based on Nighttime Lights Remote Sensing Satellite Images," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    3. Rao, Yanchun & Wang, Xiuli & Li, Hengkai, 2024. "Forecasting electricity consumption in China's Pearl River Delta urban agglomeration under the optimal economic growth path with low-carbon goals: Based on data of NPP-VIIRS-like nighttime light," Energy, Elsevier, vol. 294(C).
    4. Liu, Qilu & Cheng, Kaiming & Zhuang, Yanjie, 2022. "Estimation of city energy consumption in China based on downscaling energy balance tables," Energy, Elsevier, vol. 256(C).
    5. Naeher,Dominik & Narayanan,Raghavan & Ziulu,Virginia, 2021. "Impacts of Energy Efficiency Projects in Developing Countries : Evidence from a SpatialDifference-in-Differences Analysis in Malawi," Policy Research Working Paper Series 9842, The World Bank.
    6. Yang Zhong & Aiwen Lin & Zhigao Zhou & Feiyan Chen, 2018. "Spatial Pattern Evolution and Optimization of Urban System in the Yangtze River Economic Belt, China, Based on DMSP-OLS Night Light Data," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    7. Guibor Camargo & Andrés Miguel Sampayo & Andrés Peña Galindo & Francisco J Escobedo & Fernando Carriazo & Alejandro Feged-Rivadeneira, 2020. "Exploring the dynamics of migration, armed conflict, urbanization, and anthropogenic change in Colombia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    8. Gao, Ming & Ma, Ke & Yu, Jie, 2023. "The characteristics and drivers of China’s city-level urban-rural activity sectors’ carbon intensity gap during urban land expansion," Energy Policy, Elsevier, vol. 181(C).
    9. Hu, Ting & Wang, Ting & Yan, Qingyun & Chen, Tiexi & Jin, Shuanggen & Hu, Jun, 2022. "Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS," Applied Energy, Elsevier, vol. 322(C).
    10. Yuanzheng Cui & Lei Jiang & Weishi Zhang & Haijun Bao & Bin Geng & Qingqing He & Long Zhang & David G. Streets, 2019. "Evaluation of China’s Environmental Pressures Based on Satellite NO 2 Observation and the Extended STIRPAT Model," IJERPH, MDPI, vol. 16(9), pages 1-16, April.
    11. Yongguang Zhu & Deyi Xu & Saleem H. Ali & Ruiyang Ma & Jinhua Cheng, 2019. "Can Nighttime Light Data Be Used to Estimate Electric Power Consumption? New Evidence from Causal-Effect Inference," Energies, MDPI, vol. 12(16), pages 1-14, August.
    12. Wang, Shaobin & Liu, Haimeng & Pu, Haixia & Yang, Hao, 2020. "Spatial disparity and hierarchical cluster analysis of final energy consumption in China," Energy, Elsevier, vol. 197(C).
    13. Haize Pan & Chuan Yang & Lirong Quan & Longhui Liao, 2021. "A New Insight into Understanding Urban Vitality: A Case Study in the Chengdu-Chongqing Area Twin-City Economic Circle, China," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    14. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    15. Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
    16. Qiao, Renlu & Liu, Xiaochang & Gao, Shuo & Liang, Diling & GesangYangji, Gesang & Xia, Li & Zhou, Shiqi & Ao, Xiang & Jiang, Qingrui & Wu, Zhiqiang, 2024. "Industrialization, urbanization, and innovation: Nonlinear drivers of carbon emissions in Chinese cities," Applied Energy, Elsevier, vol. 358(C).
    17. Giacomo Falchetta & Michel Noussan, 2019. "Interannual Variation in Night-Time Light Radiance Predicts Changes in National Electricity Consumption Conditional on Income-Level and Region," Energies, MDPI, vol. 12(3), pages 1-20, January.
    18. Chen Xu & Zhenzhen Yin & Wei Sun & Zhi Cao & Mingyang Cheng, 2024. "The Urban–Rural Transformation and Its Influencing Mechanisms on Air Pollution in the Yellow River Basin," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    19. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    20. Wang, Jiaxin & Lu, Feng, 2021. "Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery," Energy, Elsevier, vol. 234(C).
    21. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    22. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    23. Gao, Kang & Yuan, Yijun, 2022. "Spatiotemporal pattern assessment of China’s industrial green productivity and its spatial drivers: Evidence from city-level data over 2000–2017," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Yuanzheng & Zhang, Weishi & Wang, Can & Streets, David G. & Xu, Ying & Du, Mingxi & Lin, Jintai, 2019. "Spatiotemporal dynamics of CO2 emissions from central heating supply in the North China Plain over 2012–2016 due to natural gas usage," Applied Energy, Elsevier, vol. 241(C), pages 245-256.
    2. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    3. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    4. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    5. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    6. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    7. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    8. Wang, Jie & Xiong, Yiling & Tian, Xin & Liu, Shangwei & Li, Jiashuo & Tanikawa, Hiroki, 2018. "Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing," Applied Energy, Elsevier, vol. 228(C), pages 1714-1725.
    9. Rui Huang & Klaus Hubacek & Kuishuang Feng & Xiaojie Li & Chao Zhang, 2018. "Re-Examining Embodied SO 2 and CO 2 Emissions in China," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    10. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    11. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    12. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    13. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    14. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    15. Xie, Yanhua & Weng, Qihao, 2016. "Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries," Energy, Elsevier, vol. 100(C), pages 177-189.
    16. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    17. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    18. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    19. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    20. Junjun Zheng & Mingmiao Yang & Gang Ma & Qian Xu & Yujie He, 2020. "Multi-Agents-Based Modeling and Simulation for Carbon Permits Trading in China: A Regional Development Perspective," IJERPH, MDPI, vol. 17(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1070-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.