IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5883-d1432511.html
   My bibliography  Save this article

The Indirect Carbon Cost of E-Mobility for Select Countries Based on Grid Energy Mix Using Real-World Data

Author

Listed:
  • Nana Kofi Twum-Duah

    (Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, 38000 Grenoble, France)

  • Lucas Hajiro Neves Mosquini

    (Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, 38000 Grenoble, France
    University of Applied Sciences of Western Switzerland, Energy Institute, HEIA-FR, 1700 Fribourg, Switzerland)

  • Muhammad Salman Shahid

    (Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, 38000 Grenoble, France)

  • Seun Osonuga

    (Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, 38000 Grenoble, France)

  • Frédéric Wurtz

    (Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, 38000 Grenoble, France)

  • Benoit Delinchant

    (Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, 38000 Grenoble, France)

Abstract

Electric vehicles are considered by many as an emission-free or low-emission solution to meet the challenge of sustainable transportation. However, the operational input, electrical energy, has an associated cost, greenhouse gasses, which results in indirect emissions. Given this knowledge, we pose the following question: “Are zero-emission transportation targets achievable given our current energy mix?” The objective of this article is to assess the impact of a grid’s energy mix on the indirect emissions of an electric vehicle. The study considers real-world data, vehicle usage data from an electric vehicle, and carbon intensity data for India, the USA, France, the Netherlands, Brazil, Germany, and Poland. Linear programming-based optimization is used to compute the best charging scenario for each of the given grids and, consequently, the indirect emissions are compared to those of a high-efficiency 1.5 L diesel internal combustion engine for the vehicle: a 2019 Renault Clio dCi 85. The results indicate that for grids with low renewable energy penetration, such as those of Poland and India (Maharashtra), an electric vehicle, even when optimally charged, can be classified as neither a low- nor zero-emission alternative to normal thermal vehicles. Also, for grids with elevated levels of variation in their carbon intensity, there is significant potential to reduce the carbon footprint related to charging an electric vehicle. This article provides a real-world perspective of how an electric vehicle performs in the face of different energy mixes and serves as a precursor to the development of robust indicators for determining the carbon reductions related to the e-mobility transition.

Suggested Citation

  • Nana Kofi Twum-Duah & Lucas Hajiro Neves Mosquini & Muhammad Salman Shahid & Seun Osonuga & Frédéric Wurtz & Benoit Delinchant, 2024. "The Indirect Carbon Cost of E-Mobility for Select Countries Based on Grid Energy Mix Using Real-World Data," Sustainability, MDPI, vol. 16(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5883-:d:1432511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    2. Tomáš Skrúcaný & Martin Kendra & Ondrej Stopka & Saša Milojević & Tomasz Figlus & Csaba Csiszár, 2019. "Impact of the Electric Mobility Implementation on the Greenhouse Gases Production in Central European Countries," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    2. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    3. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    4. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    5. Cempírek Václav & Rybicka Iwona & Ljubaj Ivica, 2019. "Development of Electromobility in Terms of Freight Transport," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 23-32, November.
    6. Diego Perrone & Teresa Castiglione & Pietropaolo Morrone & Ferdinando Pantano & Sergio Bova, 2023. "Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification," Energies, MDPI, vol. 16(19), pages 1-22, September.
    7. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    8. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    9. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    10. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    11. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    12. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    13. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    14. Betgeri, Vikram & Bhardwaj, Om Parkash & Pischinger, Stefan, 2023. "Investigation of the drop-in capabilities of a renewable 1-Octanol based E-fuel for heavy-duty engine applications," Energy, Elsevier, vol. 282(C).
    15. Norbert Zsiga & Johannes Ritzmann & Patrik Soltic, 2021. "Practical Aspects of Cylinder Deactivation and Reactivation," Energies, MDPI, vol. 14(9), pages 1-20, April.
    16. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    17. Carlos Armenta-Déu, 2024. "Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-21, March.
    18. Chen, Yong & Lu, Zhiyuan & Liu, Heng & Wang, Hu & Zheng, Zunqing & Wang, Changhui & Sun, Xingyu & Xu, Linxun & Yao, Mingfa, 2024. "Machine learning-based design of target property-oriented fuels using explainable artificial intelligence," Energy, Elsevier, vol. 300(C).
    19. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    20. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5883-:d:1432511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.