IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6911-d1251789.html
   My bibliography  Save this article

Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification

Author

Listed:
  • Diego Perrone

    (Department of Mechanical Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

  • Teresa Castiglione

    (Department of Mechanical Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

  • Pietropaolo Morrone

    (Department of Mechanical Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

  • Ferdinando Pantano

    (SILPA Srl, Via E. Fermi 14, 88900 Crotone, Italy)

  • Sergio Bova

    (Department of Mechanical Energy and Management Engineering, University of Calabria, 87036 Rende, Italy)

Abstract

In this paper, the performance of an innovative micro-combined cooling, heating, and power (CCHP) system, based on an internal combustion engine fueled with syngas from woody biomass, is analyzed. In particular, a numerical model, which considers a direct coupling between the internal combustion engine and the gasifier as a novel aspect, was developed, validated and applied to three different case studies to perform an energetic, economic and environmental analysis. For each considered case, the CCHP system was equipped with a reversible electric air–water pump and a back-up boiler. The energy analysis shows that the user characterized by a high uniformity of the thermal load exploits the CCHP system in the optimal way as it allows for the highest thermal self-consumption rate. On the contrary, for the cases in which the thermal request is not uniform, a high electric surplus is recorded. In this case, the adoption of the heat pump allows to compensate for this disadvantage by recovering the electric surplus, thus achieving a thermal integration and CO 2 emissions reduction of about 15.8% with respect to the case in which no heat pump is used. Overall, the results demonstrate the affordability of the biomass-based CCHP system, which is of increasing importance in this period of contingent international political crisis.

Suggested Citation

  • Diego Perrone & Teresa Castiglione & Pietropaolo Morrone & Ferdinando Pantano & Sergio Bova, 2023. "Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification," Energies, MDPI, vol. 16(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6911-:d:1251789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    2. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    3. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    4. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2014. "Modeling of trigeneration configurations based on biomass gasification and comparison of performance," Applied Energy, Elsevier, vol. 114(C), pages 845-856.
    5. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
    6. Costa, M. & La Villetta, M. & Massarotti, N. & Piazzullo, D. & Rocco, V., 2017. "Numerical analysis of a compression ignition engine powered in the dual-fuel mode with syngas and biodiesel," Energy, Elsevier, vol. 137(C), pages 969-979.
    7. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    8. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    9. Nadaleti, Willian Cézar & Przybyla, Grzegorz, 2018. "Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries," Energy, Elsevier, vol. 154(C), pages 38-51.
    10. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michela Costa & Daniele Piazzullo, 2024. "The Effects of Syngas Composition on Engine Thermal Balance in a Biomass Powered CHP Unit: A 3D CFD Study," Energies, MDPI, vol. 17(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    2. Fan, Junming & Hong, Hui & Zhu, Lin & Jiang, Qiongqiong & Jin, Hongguang, 2017. "Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 195(C), pages 861-876.
    3. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    4. Wang, Jiangjiang & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas," Energy, Elsevier, vol. 93(P1), pages 801-815.
    5. Wang, Lang & Lu, Jianfeng & Wang, Weilong & Ding, Jing, 2016. "Energy, environmental and economic evaluation of the CCHP systems for a remote island in south of China," Applied Energy, Elsevier, vol. 183(C), pages 874-883.
    6. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    7. Li, Xian & Kan, Xiang & Sun, Xiangyu & Zhao, Yao & Ge, Tianshu & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification," Energy, Elsevier, vol. 176(C), pages 961-979.
    8. Wang, Jiangjiang & Ma, Chaofan & Wu, Jing, 2019. "Thermodynamic analysis of a combined cooling, heating and power system based on solar thermal biomass gasification☆," Applied Energy, Elsevier, vol. 247(C), pages 102-115.
    9. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    10. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    11. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    12. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    13. Chen, Xiangxiang & Sun, Zhuang & Kuo, Po-Chih & Aziz, Muhammad, 2024. "Carbon-negative olefins production from biomass and solar energy via direct chemical looping," Energy, Elsevier, vol. 289(C).
    14. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    15. Liu, Chenglin & Zhao, Lei & Zhu, Shun & Shen, Yuefeng & Yu, Jianhua & Yang, Qingchun, 2023. "Advanced exergy analysis and optimization of a coal to ethylene glycol (CtEG) process," Energy, Elsevier, vol. 282(C).
    16. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    17. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    18. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    19. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    20. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6911-:d:1251789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.