IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7061-d405979.html
   My bibliography  Save this article

Lean Management Framework for Healthcare Facilities Integrating BIM, BEPS and Big Data Analytics

Author

Listed:
  • Gökhan Demirdöğen

    (Department of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey)

  • Zeynep Işık

    (Department of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey)

  • Yusuf Arayici

    (Department of Architecture and Built Environment, Northumbria University, Newcastle NE1 8ST, UK)

Abstract

An increase in the usage of information and communication technologies (ICT) and the Internet of Things (IoT) in Facility Management (FM) induces a huge data stack. Even though these data bring opportunities such as cost savings, time savings, increase in user comfort, space optimization, energy savings, inventory management, etc., these data sources cannot be managed and manipulated effectively to increase efficiency at the FM stage. In addition to data management issues, FM practices, or developed solutions, need to be supported with the implementation of lean management philosophy to reveal organizational and managerial wastes. In the literature, some researchers performed studies about awareness about building information modeling (BIM)-FM, and FM-related data management problems in terms of lean philosophy. However, the comprehensive solution for effective FM has not been investigated with the application of lean management philosophy yet. Therefore, this study aims to develop an FM framework for healthcare facilities by considering lean management philosophy since more stable workflow, continuous improvement, and creating more value to customers will help to deliver a more acceptable solution for the FM industry. Within this context, the integration of BIM, Building Energy Performance Simulations, and Big Data Analytics are proposed as a solution. In the study, the Design Science Research (DSR) methodology was followed to develop the FM framework. Depending on the DSR methodology, two scenarios were used to investigate the issue in a real healthcare facility and develop the FM framework. The developed framework was evaluated by four experts, and the revisions of the proposed framework were realized.

Suggested Citation

  • Gökhan Demirdöğen & Zeynep Işık & Yusuf Arayici, 2020. "Lean Management Framework for Healthcare Facilities Integrating BIM, BEPS and Big Data Analytics," Sustainability, MDPI, vol. 12(17), pages 1-33, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7061-:d:405979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    2. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    3. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    4. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    5. Burman, Esfand & Mumovic, Dejan & Kimpian, Judit, 2014. "Towards measurement and verification of energy performance under the framework of the European directive for energy performance of buildings," Energy, Elsevier, vol. 77(C), pages 153-163.
    6. Mathew, Paul A. & Dunn, Laurel N. & Sohn, Michael D. & Mercado, Andrea & Custudio, Claudine & Walter, Travis, 2015. "Big-data for building energy performance: Lessons from assembling a very large national database of building energy use," Applied Energy, Elsevier, vol. 140(C), pages 85-93.
    7. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    8. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    9. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    10. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Liu, Xiufeng & Nielsen, Per Sieverts, 2016. "A hybrid ICT-solution for smart meter data analytics," Energy, Elsevier, vol. 115(P3), pages 1710-1722.
    12. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gökhan Demirdöğen & Nihan Sena Diren & Hande Aladağ & Zeynep Işık, 2021. "Lean Based Maturity Framework Integrating Value, BIM and Big Data Analytics: Evidence from AEC Industry," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    2. Seda Tan & Gulden Gumusburun Ayalp & Muhammed Zubeyr Tel & Merve Serter & Yusuf Berkay Metinal, 2022. "Modeling the Critical Success Factors for BIM Implementation in Developing Countries: Sampling the Turkish AEC Industry," Sustainability, MDPI, vol. 14(15), pages 1-28, August.
    3. H.-Ping Tserng & Cheng-Mo Chou & Yun-Tsui Chang, 2021. "The Key Strategies to Implement Circular Economy in Building Projects—A Case Study of Taiwan," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    4. Tatjana Vilutienė & Rasa Džiugaitė-Tumėnienė & Diana Kalibatienė & Darius Kalibatas, 2021. "How BIM Contributes to a Building’s Energy Efficiency throughout Its Whole Life Cycle: Systematic Mapping," Energies, MDPI, vol. 14(20), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    2. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    3. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    4. Lyu, Wenjing & Liu, Jin, 2021. "Artificial Intelligence and emerging digital technologies in the energy sector," Applied Energy, Elsevier, vol. 303(C).
    5. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    6. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    7. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    8. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    10. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    11. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    12. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    13. Tu, Chunming & He, Xi & Shuai, Zhikang & Jiang, Fei, 2017. "Big data issues in smart grid – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1099-1107.
    14. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    16. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    17. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    18. Mohammad Navid Fekri & Ananda Mohon Ghosh & Katarina Grolinger, 2019. "Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks," Energies, MDPI, vol. 13(1), pages 1-23, December.
    19. Olga Pilipczuk, 2020. "Sustainable Smart Cities and Energy Management: The Labor Market Perspective," Energies, MDPI, vol. 13(22), pages 1-24, November.
    20. Vangelis Marinakis, 2020. "Big Data for Energy Management and Energy-Efficient Buildings," Energies, MDPI, vol. 13(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7061-:d:405979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.