IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p259-d1308559.html
   My bibliography  Save this article

Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives

Author

Listed:
  • Zhetao Chen

    (Department of Industrial and Systems Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA)

  • Hao Wang

    (Department of Civil and Environmental Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA)

Abstract

In the transition to sustainable public transportation with zero-emission buses, hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However, assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination, encompassing both sensitivity and probabilistic analyses, to assess the total cost of ownership (TCO) for the bus fleet and its corresponding infrastructure. It considers various hydrogen supply options, encompassing on-site electrolysis, on-site steam methane reforming, and off-site hydrogen procurement with both gaseous and liquid delivery methods. The analysis covers critical cost elements, encompassing bus acquisition costs, infrastructure capital expenses, and operational and maintenance costs for both buses and infrastructure. This paper conducted two distinct case studies: one involving a current small bus fleet of five buses and another focusing on a larger fleet set to launch in 2028. For the current small fleet, the off-site gray hydrogen purchase with a gaseous delivery option is the most cost-effective among hydrogen alternatives, but it still incurs a 26.97% higher TCO compared to diesel buses. However, in the case of the expanded 2028 fleet, the steam methane-reforming method without carbon capture emerges as the most likely option to attain the lowest TCO, with a high probability of 99.5%. Additionally, carbon emission costs were incorporated in response to the growing emphasis on environmental sustainability. The findings indicate that although diesel buses currently represent the most economical option in terms of TCO for the existing small fleet, steam methane reforming with carbon capture presents a 69.2% likelihood of being the most cost-effective solution, suggesting it is a strong candidate for cost efficiency for the expanded 2028 fleet. Notably, substantial investments are required to increase renewable energy integration in the power grid and to enhance electrolyzer efficiency. These improvements are essential to make the electrolyzer a more competitive alternative to steam methane reforming. Overall, the findings in this paper underscore the substantial impact of the hydrogen supply chain and carbon emission costs on the TCO of zero-emission buses.

Suggested Citation

  • Zhetao Chen & Hao Wang, 2023. "Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:259-:d:1308559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orhan Topal & İsmail Nakir, 2018. "Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City," Energies, MDPI, vol. 11(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    3. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    4. Iván López & Pedro Luis Calvo & Gonzalo Fernández-Sánchez & Carlos Sierra & Roberto Corchero & Cesar Omar Chacón & Carlos de Juan & Daniel Rosas & Francisco Burgos, 2022. "Different Approaches for a Goal: The Electrical Bus-EMT Madrid as a Successful Case Study," Energies, MDPI, vol. 15(17), pages 1-24, August.
    5. Armando Cartenì & Ilaria Henke & Clorinda Molitierno & Luigi Di Francesco, 2020. "Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    6. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    7. Jasmina Pašagić Škrinjar & Borna Abramović & Lucija Bukvić & Željko Marušić, 2020. "Managing Fuel Consumption and Emissions in the Renewed Fleet of a Transport Company," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    8. Sistig, Hubert Maximilian & Sauer, Dirk Uwe, 2023. "Metaheuristic for the integrated electric vehicle and crew scheduling problem," Applied Energy, Elsevier, vol. 339(C).
    9. Michel Noussan, 2023. "The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study," Energies, MDPI, vol. 16(24), pages 1-18, December.
    10. Tommy Rosén & Louise Ödlund, 2019. "System Perspective on Biogas Use for Transport and Electricity Production," Energies, MDPI, vol. 12(21), pages 1-13, October.
    11. François, Agnès & Roche, Robin & Grondin, Dominique & Winckel, Nastasya & Benne, Michel, 2024. "Investigating the use of hydrogen and battery electric vehicles for public transport: A technical, economical and environmental assessment," Applied Energy, Elsevier, vol. 375(C).
    12. Maciej Kozłowski & Andrzej Czerepicki, 2023. "Quick Electrical Drive Selection Method for Bus Retrofitting," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    13. Casper Boongaling Agaton & Angelie Azcuna Collera & Charmaine Samala Guno, 2020. "Socio-Economic and Environmental Analyses of Sustainable Public Transport in the Philippines," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    14. Anders Grauers & Sven Borén & Oscar Enerbäck, 2020. "Total Cost of Ownership Model and Significant Cost Parameters for the Design of Electric Bus Systems," Energies, MDPI, vol. 13(12), pages 1-28, June.
    15. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2020. "Development Forecasts for the Zero-Emission Bus Fleet in Servicing Public Transport in Chosen EU Member Countries," Energies, MDPI, vol. 13(16), pages 1-20, August.
    16. Ilya Kulikov & Andrey Kozlov & Alexey Terenchenko & Kirill Karpukhin, 2020. "Comparative Study of Powertrain Hybridization for Heavy-Duty Vehicles Equipped with Diesel and Gas Engines," Energies, MDPI, vol. 13(8), pages 1-23, April.
    17. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    18. Chung-Jen Chou & Shyh-Biau Jiang & Tse-Liang Yeh & Chein-Chung Sun, 2021. "Fault-Tolerant Battery Power Network Architecture of Networked Swappable Battery Packs in Parallel," Energies, MDPI, vol. 14(10), pages 1-21, May.
    19. Călin Iclodean & Nicolae Cordoș & Adrian Todoruț, 2019. "Analysis of the Electric Bus Autonomy Depending on the Atmospheric Conditions," Energies, MDPI, vol. 12(23), pages 1-23, November.
    20. Krzysztof KRAWIEC, 2021. "Vehicle Cycle Hierarchization Model To Determine The Order Of Battery Electric Bus Deployment In Public Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 99-112, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:259-:d:1308559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.