IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p7995-d1297394.html
   My bibliography  Save this article

The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study

Author

Listed:
  • Michel Noussan

    (Department of Energy, Politecnico di Torino, 10129 Torino, Italy
    Paris School of International Affairs, Sciences Po, 75007 Paris, France)

Abstract

Public transport can play a central role in representing a viable and sustainable mobility solution, especially in urban areas. Average energy consumption and emissions per passenger are much lower than for private cars. At the same time, current buses often mostly rely on diesel, and there are different solutions that can contribute to public transport decarbonization. Biomethane is among the options to exploit local low-carbon resources to decrease the emissions of public transport in urban environments. This paper presents the analysis of a real case study considering real data on the fuel consumption and mileage of the existing bus fleet in the city of Turin, Italy, composed by diesel and natural gas buses. The aim of this study is to estimate the effect of different penetration levels of biomethane in substitution of the current fuels. The results show that the use of biomethane in urban buses could save to up to 71% of emissions compared to the current situation, and savings would increase to 75% when deploying biomethane and electric buses together. Average emissions per pkm could decrease from a current level of 85.5 g CO2 /pkm to 21.3–63.4 g CO2 /pkm depending on the penetration of biomethane and electric buses. The sensitivity analysis shows even higher savings when accounting for the future decrease of the electricity carbon intensity in Italy and for the additional benefits related to avoided emissions from manure disposal. The results of the analysis demonstrate the potential contribution of biomethane in decarbonizing urban buses, and the findings presented for this case study can be of use for policy makers and researchers that deal with a similar situation in other cities and countries.

Suggested Citation

  • Michel Noussan, 2023. "The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study," Energies, MDPI, vol. 16(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7995-:d:1297394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/7995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/7995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sales Silva, Sara Talita & Barros, Regina Mambeli & Silva dos Santos, Ivan Felipe & Maria de Cassia Crispim, Adriele & Tiago Filho, Geraldo Lúcio & Silva Lora, Electo Eduardo, 2022. "Technical and economic evaluation of using biomethane from sanitary landfills for supplying vehicles in the Southeastern region of Brazil," Renewable Energy, Elsevier, vol. 196(C), pages 1142-1157.
    2. Lee, Sangho & Yi, Ui Hyung & Jang, Hyungjoon & Park, Cheolwoong & Kim, Changgi, 2021. "Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane," Energy, Elsevier, vol. 220(C).
    3. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    4. John O. Olawepo & L.-W. Antony Chen, 2019. "Health Benefits from Upgrading Public Buses for Cleaner Air: A Case Study of Clark County, Nevada and the United States," IJERPH, MDPI, vol. 16(5), pages 1-10, February.
    5. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    6. Orhan Topal & İsmail Nakir, 2018. "Total Cost of Ownership Based Economic Analysis of Diesel, CNG and Electric Bus Concepts for the Public Transport in Istanbul City," Energies, MDPI, vol. 11(9), pages 1-17, September.
    7. Keogh, Niamh & Corr, D. & O'Shea, R. & Monaghan, R.F.D., 2022. "The gas grid as a vector for regional decarbonisation - a techno economic case study for biomethane injection and natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    2. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    3. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. José Juan Alvarado-Flores & Jorge Víctor Alcaraz-Vera & María Liliana Ávalos-Rodríguez & Erandini Guzmán-Mejía & José Guadalupe Rutiaga-Quiñones & Luís Fernando Pintor-Ibarra & Santiago José Guevara-M, 2024. "Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification," Energies, MDPI, vol. 17(2), pages 1-21, January.
    5. Artur Jaworski & Hubert Kuszewski & Krzysztof Balawender & Paweł Woś & Krzysztof Lew & Mirosław Jaremcio, 2024. "Assessment of CH 4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio," Energies, MDPI, vol. 17(9), pages 1-18, April.
    6. Piotr Pryciński & Piotr Pielecha & Jarosław Korzeb & Jacek Pielecha & Mariusz Kostrzewski & Ahmed Eliwa, 2024. "Air Pollutant Emissions of Passenger Cars in Poland in Terms of Their Environmental Impact and Type of Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-21, October.
    7. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    8. Goulding, D. & Fitzpatrick, D. & O'Connor, R. & Browne, J.D. & Power, N.M., 2019. "Introducing gaseous transport fuel to Ireland: A strategic infrastructure framework," Renewable Energy, Elsevier, vol. 136(C), pages 548-557.
    9. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    10. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    11. M, Jerome Stanley & Varuvel, Edwin Geo & M, Leenus Jesu Martin, 2024. "Evaluating the potential performance of methane in lean conditions and examining the variations in combustion in a gasoline direct injection engine," Energy, Elsevier, vol. 302(C).
    12. Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
    13. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    14. Iván López & Pedro Luis Calvo & Gonzalo Fernández-Sánchez & Carlos Sierra & Roberto Corchero & Cesar Omar Chacón & Carlos de Juan & Daniel Rosas & Francisco Burgos, 2022. "Different Approaches for a Goal: The Electrical Bus-EMT Madrid as a Successful Case Study," Energies, MDPI, vol. 15(17), pages 1-24, August.
    15. Miroslaw Smieszek & Vasyl Mateichyk & Jakub Mosciszewski, 2024. "The Influence of Stops on the Selected Route of the City ITS on the Energy Efficiency of the Public Bus," Energies, MDPI, vol. 17(16), pages 1-26, August.
    16. Armando Cartenì & Ilaria Henke & Clorinda Molitierno & Luigi Di Francesco, 2020. "Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    17. Maren Schnieder & Chris Hinde & Andrew West, 2022. "Emission Estimation of On-Demand Meal Delivery Services Using a Macroscopic Simulation," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    18. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    19. Piotr Pryciński & Róża Wawryszczuk & Jarosław Korzeb & Piotr Pielecha, 2023. "Indicator Method for Determining the Emissivity of Road Transport Means from the Point of Supplied Energy," Energies, MDPI, vol. 16(12), pages 1-22, June.
    20. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7995-:d:1297394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.